W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

IP Addresses, DNS
CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:

Andrew Hu Austin Chan Brennan Stein
Cheng Ni Cosmo Wang Diya Joy
Guramrit Singh Mengqi Chen Pat Kosakanchit
Rehaan Bhimani Renshu Gu Travis McGaha

Zachary Keyes

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Administrivia

+» hw3 is due Thursday (2/27)

= Usual reminders: don’t forget to tag, clone elsewhere, and
recompile

+» hw4 out on Friday (2/28)

+ Exercise 15 will be released on Thursday
= Related to section this week

" Can start looking at it early; we’ll finish covering material on
Friday

YA/ UNIVERSITY of WASHINGTON

Lecture Outline

+» Network Programming
= Sockets API
= Network Addresses
= DNS Lookup

L20: IP Addresses, DNS

CSE333, Winter 2020

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Files and File Descriptors

+» Remember open (), read(),write (), and
close()?

= POSIX system calls for interacting with files
" open () returns a file descriptor

- An integer that represents an open file
- This file descriptor is then passed to read (), write (), and
close ()
" |nside the OS, the file descriptor is used to index into a table that
keeps track of any OS-level state associated with the file, such as
the file position

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Networks and Sockets

+» UNIX likes to make all I/0O look like file /0O

" Youuse read () andwrite () to communicate with remote
computers over the network!

= A file descriptor use for network communications is called a
socket

= Just like with files:

- Your program can have multiple network channels open at once

- You need to pass a file descriptor to read () andwrite () tolet the
OS know which network channel to use

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

File Descriptor Table

OS’s File Descriptor Table for the Process

128.95.4.33 Al Type Connection

Descriptor

Web Server

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3 TCP local: 128.95.4.33:80
E socket | remote: 44.1.19.32:7113
E 5 file index.html
é 8 file pic.png

9 TCP local: 128.95.4.33:80

socket | remote: 102.12.3.4:5544

client § client

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Types of Sockets

g+ Stream sockets - we ull focus here 335
" For connection-oriented, point-to-point, reliable byte streams
- Using TCP, SCTP, or other stream transports

+» Datagram sockets

" For connection-less, one-to-many, unreliable packets
- Using UDP or other packet transports

%~ Raw sockets
" For layer-3 communication (raw IP packet manipulation)

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Stream Sockets

+ Typically used for client-server communications
= Client: An application that establishes a connection to a server
= Server: An application that receives connections from clients

" Can also be used for other forms of communication like peer-to-
peer

eserver

1) Establish connection: client «

2) Communicate: client «

3) Close connection: * server

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Datagram Sockets

+» Often used as a building block
"= No flow control, ordering, or reliability, so used less frequently
= e.g. streaming media applications or DNS lookups

1) Create sockets:

)
= g
N
9

2) Communicate:

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

The Sockets API

+» Berkeley sockets originated in 4.2BSD Unix (1983)

" |tis the standard API for network programming
- Available on most OSs

47® Writtenin C

+» POSIX Socket API
= Aslight update of the Berkeley sockets API

- A few functions were deprecated or replaced
- Better support for multi-threading was added

10

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Socket API: Client TCP Connection

+» We'll start by looking at the API from the point of view of
a client connecting to a server over TCP

- There are five steps:

fl) Figure out the IP address and port to which to connect ‘ﬁ f\oaa)(
2) Create a socket
l 3) Connect the socket to the remote server
e 5 4) read () andwrite () data using the socket
\O&(el 5) Close the socket
g e WO

11

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Step 1: Figure Out IP Address and Port

+» Several parts:
= Network addresses
= Data structures for address info
= DNS (Domain Name System) — finding IP addresses

12

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

IPv4 Network Addresses

+» An IPv4 address is a 4-byte tuple (2* OM'WJ)

" For humans, written in “dotted-decimal notation”
" e.9.128.95.4.1 (80:5f£:04:01 in hex)

« |Pv4 address exhaustion
" There are 232 = 4.3 billion IPv4 addresses

" There are = 7.77 billion people in the world (February 2020)

13

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

IPv6 Network Addresses

+~ An IPv6 address is a 16-byte tuple (an ao\o\resses>

= Typically written in “hextets” (groups of 4 hex digits)

(1) « Can omit leading zeros in hextets
(9 + Double-colon replaces consecutive sections of zeros

n e.g.2d01:/6db8:f188:@ . 0000:0000:0000: 1F33
. Shorthand: 2d01:db8:f188::1£33

—

" Transition is still ongoing

- IPv4-mapped IPv6 addresses
— 128.95.4.1 mappedto : : ££££:12895.4.10or : : ££££:805£:401

- This unfortunately makes network programming more of a headache

®

14

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Linux Socket Addresses

L 4

4

L)

L)

4

L)

L)

<&

L)

Structures, constants, and helper functions available in
#include <arpa/inet.h>

Addresses stored in network byte order (big endian)

Converting between host and network byte orders:
" uint32 t htonl(uint32_ t hostlong) ;
" uint32 t ntohl (uint32 t netlong) ;

- ‘h’ for host byte order and ‘n’ for network byte order

- Also versions with ‘s’ for short (uint16 t instead)

How to handle both IPv4 and IPv6?

" Use C structs for each, but make them somewhat similar

" Use defined constants to differentiate when to use each:(»w other ml:d)

AF INET forIPv4 and AF INET6 for IPv6 Ypes enist!
= 6ddvess Famly N

YA/ UNIVERSITY of WASHINGTON

L20: IP Addresses, DNS CSE333, Winter 2020

IPv4 Address Structures

struct in addr {
uint32 t s addr;

} i

struct sockaddr in

i

// IPv4 4-byte address

// Address in network byte order

// An IPv4-specific address structure

sa family t sin family; // Address family:

\\gin_port_t sin port; // Port in network byte order
struct in addr sin addr; // IPv4 address
unsigned char sin zero[8]; // Pad out to 16 bytes

n

|BI+,S)

struct sockaddr in:

family| port

addr

Zero

0 2 4

16

16

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Practice Question

+» Assume we have a struct sockaddr in that
represents a socket connected to 198.35.26.96

(c6:23:1a:60) on port 80 (0x50) stored on a little-endian
machine.

"= AF INET = 2
= Fill in the bytes in memory below (in hex):

Sin_ ’Fﬁw:lly S _ be‘\' Sl _ OMr
6% (lhost) x50 (netuork) Oxcblla 60 Cretwork)

o] O2 | o | oo | 5o co | 2% | la | &0

——

8l CO| OO | o | O | O | O | O | O

OxO CL\oS‘l')
Sin_2€r o

17

YA/ UNIVERSITY of WASHINGTON

L20: IP Addresses, DNS

IPv6 Address Structures

// IPvé6 16-byte address
struct iné_addr
uint8 t s6_addr([1l6];

}i

struct sockaddr iné6

// Address in network byte order

// An IPv6-gspecific address structure

sa family t sin6e family; // Address family:
in port t sin6é port; // Port number
uint32 t siné flowinfo; // IPve flow infprmation
Mstruct iné addr siné addr; // IPv6 address
uint32 t siné scope id; // Scope ID
} h ~— (on :gnbl‘e
struct sockaddr iné:
— addr
famport| flow scope
0 2 4 8 0«(&7/ ot (6 by‘fes > 24 28

CSE333, Winter 2020

18

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Generic Address Structures
5‘*::\»5\' .SOC\KOCMY*“

r// A mostly-protocol-independent address structure. Z/)
// Pointer to this is parameter type for socket system calls.
struct sockaddr {

sa_family t sa family; // Address family (AF * constants)
char sa datall4]; // Socket address (size varies
// according to socket domain)
}i

// A structure big enough to hold either IPv4 or IPvé6 structs
struct sockaddr storage { Cat lesst 23 bytes)
sa family t ss family; // Address family

// padding and alignment; don’t worry about the details
char ss padl[SS PAD1SIZE];

int64 t ss align;

char ss pad2[SS PAD2SIZE] ;

}i

\ S

®= Commonly create struct sockaddr storage, then pass
pointer cast as struct sockaddr* to connect ()

19

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Address Conversion odpt
6ddress 5+r:r\3 (5’(ch oM F¥ o
Family ¢ e.Pre:erd’adﬁ'br\ S‘\'r“_d' inﬁ,ab-dr*

& (int inet pton(int af, const char* src, void* dst);)

= Converts human-readable string representation (“presentation”)
to network byte ordered address

= Returns 1 (success), 0 (bad src), or -1 (error)

1

[#include <stdlib.hs genaddr.cc

#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr in sa; // IPv4
struct sockaddr iné saé6; // IPvé

// IPv4 string to sockaddr in (192.0.2.1 = C0:00:02:01).
inet pton (AF INET, "192.0.2.1", &(sa.sin addr));

// IPvé string to sockaddr iné.
inet pton (AF INET6, "2001:db8:63b3:1::3490", &(sa6.sin6 addr)) ;

return EXIT SUCCESS;

20

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Address Conversion

add ress Avwct in_addr™ or
‘F“W‘"'Y Strud inb- aMf‘k

+ [const char* inet ptop(int af, const void* src,
char* dst, socklen t size);

= Converts network addr in src into buffer dst of size size
" Returns dst on success; NULL on error

\

#include <stdlib.hs> genstring.cc

#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr iné saé6; // IPv6
char astring[INET6 ADDRSTRLEN]; // IPvé6

// IPvé string to sockaddr iné.
inet pton (AF INET6, "2001:0db8:63b3:1::3490", &(sa6.siné addr));

// sockaddr iné to IPvé string. g/o" INET_ ADDRSTR LEN
inet ntop (AF INET6, &(sa6.sin6 addr), astring, INET6 ADDRSTRLEN) ;
std::cout << astring << std::endl; //2090:dLg:63L3:1 - 34490

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON

L20: IP Addresses, DNS

Domain Name System

+~ People tend to use DNS names, not IP addresses

" The Sockets API lets you convert between the two
" |t's a complicated process, though:
- A given DNS name can have many IP addresses

- Many different IP addresses can map to the same DNS name

— An IP address will reverse map into at most one DNS name

- A DNS lookup may require interacting with many DNS servers

% You can use the Linux program “dig” to explore DNS
" dig @server name type (+short)
- server: specific name server to query
- type: A (IPv4), AAAA (IPv6), ANY (includes all types)

CSE333, Winter 2020

22

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

DNS Hierarchy

Root
Name Servers

-~
-
-
-~ - 7 ~
g - 7’ \V - ~a
Top-level
com cn oo org :
Domain Servers
/ L W / \ 7/ \ / v S
/ \ TS \‘ 1 - . 1 b / \ R ~
/ \ S / \ RN
l A - a\ l \ | - -
facebook google XN I netflix apache wikipedia KX
7 1 N 7 /7 \ S o 7 1 N 7 1 N / \ 7 1 N
Loy x// / \ - Lo, s ooy / \ Lo, s
/ / \ L / \

/ / \ N / \
Mg ¥ <« N M) \
docs mail news R news ceooe

23

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

Resolving DNS Names

+» The POSIX way is to use getaddrinfo ()

A complicated system call found in #include <netdb.h>

int getaddrinfo (const char* hostname,
const char* service,

const struct addrinfo* hints,ﬁ——~\\\\\
struct addrinfo** resjis
ad _ ~

- Tellgetaddrinfo () which host and port you want resolved
— String representation for host: DNS name or IP address

- Setup a “hints” structure with constraints you want respected

- getaddrinfo () givesyou a list of results packed into an
“addrinfo” structure/linked list

— Returns 0 on success; returns negative number on failure

- Freethe struct addrinfo later using freeaddrinfo ()
f‘ecur.s'we'\/ -(rees res \'m\<e& li.sf

24

YA/ UNIVERSITY of WASHINGTON L20: IP Addresses, DNS

getaddrinfo

O " don't care“ op+ wons

+» getaddrinfo () arguments:

®" hostname —domain name or IP address string

" service—port#(e.g. "80") orservice name (e.g. "www")

of NULL/nullpt®

B | struct addrinfo

int al flags;
int al family;
int al socktype;
int al protocol;

size t ai_addrlen;

9 struct sockaddr* ai addr;
char* al_canonname;
struct addrinfo* ai next;

// additional flags

// AF_INET, AF INET6, (AF UNSPE
// SOCK_STREAM, SOCK_DGRAM, (0)
// IPPROTO_TCP, IPPROTO_UDP, (0)
// length of socket addr in bytes
// polinter to socket addr

// canonical name

// can form a linked 1list

25

CSE333, Winter 2020

W UNIVERSITY of WASHINGTON L20: IP Addresses, DNS CSE333, Winter 2020

DNS Lookup Procedure

struct addrinfo
int ai flags; // additional flags
int ai family; // AF _INET, AF INET6, AF UNSPEC
int ai socktype; // SOCK STREAM, SOCK DGRAM, 0
int al protocol; // IPPROTO TCP, IPPROTO UDP, 0
size t ai addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char=* al canonname; // canonical name
struct addrinfo* ai next; // can form a linked list

} i

1) Createa struct addrinfo hints

2) Zeroout hints for “defaults”

3) Set specific fields of hints as desired

4) Callgetaddrinfo () using &hints

5) Resulting linked list res will have all fields appropriately set

é / See dnsresolve.cc

26

