
CSE333, Winter 2020L18: C++ Inheritance II, Casts

C++ Inheritance II, Casts
CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:
Andrew Hu Austin Chan Brennan Stein
Cheng Ni Cosmo Wang Diya Joy
Guramrit Singh Mengqi Chen Pat Kosakanchit
Rehaan Bhimani Renshu Gu Travis McGaha
Zachary Keyes

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Administrivia
 Exercise 14 released today, due Monday
 C++ inheritance with abstract class

 hw3 is due next Thursday (2/27)
 Suggestion: write index files to /tmp/, which is a local scratch

disk and is very fast, but please clean up when you’re done

 Midterm grading
 Submit regrade requests via Gradescope for each subquestion

• These go to different graders
 Regrade requests open until Sunday @ 5 pm (2/23)

2

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Lecture Outline
 C++ Inheritance
 Static Dispatch
 Abstract Classes
 Constructors and Destructors
 Assignment

 C++ Casting

 Reference: C++ Primer, Chapter 15
3

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Reminder: virtual is “sticky”
 If X::f() is declared virtual, then a vtable will be

created for class X and for all of its subclasses
 The vtables will include function pointers for (the correct) f

 f() will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword
 Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code

4

CSE333, Winter 2020L18: C++ Inheritance II, Casts

What happens if we omit “virtual”?
 By default, without virtual, methods are dispatched

statically
 At compile time, the compiler writes in a call to the address of

the class’ method in the .text segment
• Based on the compile-time visible type of the callee

 This is different than Java

5

class Derived : public Base { ... };

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->foo();
bp->foo();
return EXIT_SUCCESS;

}

Derived::foo()
...

Base::foo()
...

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Static Dispatch Example
 Removed virtual on methods:

6

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes Stock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s->GetProfit();

// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit();

double Stock::GetMarketValue() const;
double Stock::GetProfit() const;

Stock.h

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Why Not Always Use virtual?
 Two (fairly uncommon) reasons:
 Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)
• A class with no virtual functions has objects without a vptr field

 Control:
• If f() calls g() in class X and g is not virtual, we’re guaranteed to

call X::g() and not g() in some subclass
– Particularly useful for framework design

 In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

 In C++ and C#, you can pick what you want
 Omitting virtual can cause obscure bugs

7

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Mixed Dispatch
 Which function is called is a mix of both compile time and

runtime decisions as well as how you call the function
 If called on an object (e.g. obj.Fcn()), usually optimized into a

hard-coded function call at compile time
 If called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fcn(); // which version is called?

8

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Mixed Dispatch Example

9

class A {
public:
// m1 will use static dispatch
void m1() { cout << "a1, "; }
// m2 will use dynamic dispatch
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1, "; }
// m2 is still virtual by default
void m2() { cout << "b2"; }

};

void main(int argc,
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1(); //
a_ptr_a->m2(); //

a_ptr_b->m1(); //
a_ptr_b->m2(); //

b_ptr_b->m1(); //
b_ptr_b->m2(); //

}

mixed.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Practice Question
 Whose Foo() is called?
 Vote at http://PollEv.com/justinh

Q1 Q2
A. A A
B. A B
C. D A
D. D B
E. We’re lost…

10

class A {
public:

void Foo();
};

class B : public A {
public:
virtual void Foo();

};

class C : public B {
};

class D : public C {
public:
void Foo();

};

class E : public C {
};

void Bar() {
D d;
E e;
A* a_ptr = &d;
C* c_ptr = &e;

// Q1:
a_ptr->Foo();

// Q2:
c_ptr->Foo();

}

test.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Abstract Classes
 Sometimes we want to include a function in a class but

only implement it in derived classes
 In Java, we would use an abstract method
 In C++, we use a “pure virtual” function

• Example: virtual string noise() = 0;

 A class containing any pure virtual methods is abstract
 You can’t create instances of an abstract class
 Extend abstract classes and override methods to use them

 A class containing only pure virtual methods is the same
as a Java interface
 Pure type specification without implementations

11

virtual string noise() = 0;

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Lecture Outline
 C++ Inheritance
 Static Dispatch
 Abstract Classes
 Constructors and Destructors
 Assignment

 C++ Casting

 Reference: C++ Primer, Chapter 15
12

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Derived-Class Objects
 A derived object contains “subobjects” corresponding to

the data members inherited from each base class
 No guarantees about how these are laid out in memory (not even

contiguousness between subobjects)

 Conceptual structure of DividendStock object:

13

symbol_
total_shares_
total_cost_
current_price_

dividends_

members inherited
from Stock

members defined by
DividendStock

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Constructors and Inheritance
 A derived class does not inherit the base class’

constructor
 The derived class must have its own constructor
 A synthesized default constructor for the derived class first

invokes the default constructor of the base class and then
initialize the derived class’ member variables
• Compiler error if the base class has no default constructor

 The base class constructor is invoked before the constructor of
the derived class
• You can use the initialization list of the derived class to specify which

base class constructor to use

14

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Constructor Examples

15

class Base { // no default ctor
public:
Base(int yi) : y(yi) { }
int y;

};

// Compiler error when you try to
// instantiate a Der1, as the
// synthesized default ctor needs
// to invoke Base's default ctor.
class Der1 : public Base {
public:
int z;

};

class Der2 : public Base {
public:
Der2(int yi, int zi)

: Base(yi), z(zi) { }
int z;

};

badctor.cc
// has default ctor
class Base {
public:
int y;

};

// works now
class Der1 : public Base {
public:
int z;

};

// still works
class Der2 : public Base {
public:
Der2(int zi) : z(zi) { }
int z;

};

goodctor.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Destructors and Inheritance
 Destructor of a derived

class:
 First runs body of the dtor
 Then invokes of the dtor

of the base class

 Static dispatch of
destructors is almost
always a mistake!
 Good habit to always

define a dtor as virtual
• Empty body if there’s

no work to do

16

class Base {
public:
Base() { x = new int; }
~Base() { delete x; }
int* x;

};

class Der1 : public Base {
public:
Der1() { y = new int; }
~Der1() { delete y; }
int* y;

};

void foo() {
Base* b0ptr = new Base;
Base* b1ptr = new Der1;

delete b0ptr; //
delete b1ptr; //

}

baddtor.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Assignment and Inheritance
 C++ allows you to assign

the value of a derived
class to an instance of
a base class
 Known as object slicing

• It’s legal since b = d
passes type checking rules

• But b doesn’t have space
for any extra fields in d

17

class Base {
public:
Base(int xi) : x(xi) { }
int x;

};

class Der1 : public Base {
public:
Der1(int yi) : Base(16), y(yi) { }
int y;

};

void foo() {
Base b(1);
Der1 d(2);

d = b; //
b = d; //

}

slicing.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

STL and Inheritance
 Recall: STL containers store copies of values
 What happens when we want to store mixes of object types in a

single container? (e.g. Stock and DividendStock)
 You get sliced

18

#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> li;

li.push_back(s); // OK
li.push_back(ds); // OUCH!

return EXIT_SUCCESS;
}

CSE333, Winter 2020L18: C++ Inheritance II, Casts

STL and Inheritance
 Instead, store pointers to heap-allocated objects in STL

containers
 No slicing!
 sort() does the wrong thing
 You have to remember to delete your objects before

destroying the container
• Smart pointers!

19

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Lecture Outline
 C++ Inheritance
 Static Dispatch
 Abstract Classes
 Constructors and Destructors
 Assignment

 C++ Casting

 Reference: C++ Primer §4.11.3, 19.2.1
20

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Explicit Casting in C
 Simple syntax: lhs = (new_type) rhs;
 Used to:
 Convert between pointers of arbitrary type

• Don’t change the data, but treat differently
 Forcibly convert a primitive type to another

• Actually changes the representation

 You can still use C-style casting in C++, but sometimes the
intent is not clear

21

lhs = (new_type) rhs;

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Casting in C++
 C++ provides an alternative casting style that is more

informative:
 static_cast<to_type>(expression)

 dynamic_cast<to_type>(expression)

 const_cast<to_type>(expression)

 reinterpret_cast<to_type>(expression)

 Always use these in C++ code
 Intent is clearer
 Easier to find in code via searching

22

CSE333, Winter 2020L18: C++ Inheritance II, Casts

static_cast

 static_cast can convert:
 Pointers to classes of related type

• Compiler error if classes are not related
• Dangerous to cast down a class hierarchy

 Non-pointer conversion
• e.g. float to int

 static_cast is
checked at compile time

23

class A {
public:
int x;

};

class B {
public:
float x;

};

class C : public B {
public:
char x;

};

void foo() {
B b; C c;

// compiler error
A* aptr = static_cast<A*>(&b);
// OK
B* bptr = static_cast<B*>(&c);
// compiles, but dangerous
C* cptr = static_cast<C*>(&b);

}

staticcast.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

dynamic_cast

 dynamic_cast can convert:
 Pointers to classes of related type
 References to classes of related type

 dynamic_cast is checked at both
compile time and
run time
 Casts between

unrelated classes fail
at compile time

 Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

24

void bar() {
Base b; Der1 d;

// OK (run-time check passes)
Base* bptr = dynamic_cast<Base*>(&d);
assert(bptr != nullptr);

// OK (run-time check passes)
Der1* dptr = dynamic_cast<Der1*>(bptr);
assert(dptr != nullptr);

// Run-time check fails, returns nullptr
bptr = &b;
dptr = dynamic_cast<Der1*>(bptr);
assert(dptr != nullptr);

}

dynamiccast.cc
class Base {
public:
virtual void foo() { }
float x;

};

class Der1 : public Base {
public:
char x;

};

CSE333, Winter 2020L18: C++ Inheritance II, Casts

const_cast

 const_cast adds or strips const-ness
 Dangerous (!)

25

void foo(int* x) {
*x++;

}

void bar(const int* x) {
foo(x); // compiler error
foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {
int x = 7;
bar(&x);
return EXIT_SUCCESS;

}

CSE333, Winter 2020L18: C++ Inheritance II, Casts

reinterpret_cast

 reinterpret_cast casts between incompatible types
 Low-level reinterpretation of the bit pattern
 e.g. storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough
 Converting between incompatible pointers

• Dangerous (!)
• This is used (carefully) in hw3

26

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Extra Exercise #1
 Design a class hierarchy to represent shapes
 e.g. Circle, Triangle, Square

 Implement methods that:
 Construct shapes
 Move a shape (i.e. add (x,y) to the shape position)
 Returns the centroid of the shape
 Returns the area of the shape
 Print(), which prints out the details of a shape

27

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Extra Exercise #2
 Implement a program that uses Extra Exercise #1 (shapes

class hierarchy):
 Constructs a vector of shapes
 Sorts the vector according to the area of the shape
 Prints out each member of the vector

 Notes:
 Avoid slicing!
 Make sure the sorting works properly!

28

