YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

CSE333, Winter 2020

C++ Inheritance I, Casts

CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:

Andrew Hu Austin Chan
Cheng Ni Cosmo Wang
Guramrit Singh Mengqi Chen
Rehaan Bhimani Renshu Gu

Zachary Keyes

Brennan Stein
Diya Joy

Pat Kosakanchit
Travis McGaha

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Administrivia

+ Exercise 14 released today, due Monday
= C++inheritance with abstract class

+» hw3 is due next Thursday (2/27)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

+» Midterm grading

= Submit regrade requests via Gradescope for each subquestion
- These go to different graders

= Regrade requests open until Sunday @ 5 pm (2/23)

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors
" Assignment

% C++ Casting

+ Reference: C++ Primer, Chapter 15

CSE333, Winter 2020

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Reminder: virtual is “sticky”

R/
0’0

4

)

If X::£f () is declared virtual, then a vtable will be
created for class X and for all of its subclasses
= The vtables will include function pointers for (the correct) £

£ () will be called using dynamic dispatch even if
overridden in a derived class without the virtual

keyworc
" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you'll sometimes see both, particularly in older code

YA/ UNIVERSITY of WASHINGTON

L18: C++ Inheritance Il, Casts

CSE333, Winter 2020

What happens if we omit “virtual”?

+» By default, without virtual, methods are dispatched

statically

= At compile time, the compiler writes in a call to the address of

the class’ method in the . text segment

- Based on the compile-time visible type of the callee

" This is different than Java

[class Derived : public Base {
int main (int argc, char** argv)
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->foo () ;

{

Derived: : foo ()

bp->foo() ;
return EXIT SUCCESS;

Base: :foo ()

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Static Dispatch Example

+ Removed virtual on methods: Stock h
r~ defined 1w Stk % Diwdedﬁzxk ’

double Stock::GetMarE%tValue() const;
double Stock::GetProgit() const;

C defined in .S‘f'(zls inhere Ly Diidend Stod Glls Get Mgrket Value()

DividendStock dividend () ;
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s->GetMarketValue () ;

// invokes Stock::GetProfit ().
// Stock::GetProfit () invokes Stock::GetMarketValue ().
s->GetProfit () ;

// invokes Stock::GetProfit (), since that method is inherited.
// Stock::GetProfit () invokes Stock::GetMarketValue ().
ds->GetProfit () ;

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Why Not Always Use virtual?

% Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

- If £() callsg () inclass X and g is not virtual, we’re guaranteed to
call X: :g () and not g () in some subclass

— Particularly useful for framework design

- In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

4

D)

L)

<>

» In C++ and C#, you can pick what you want

L)

= Omitting virtual can cause obscure bugs

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Mixed Dispatch

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g. obj . Fcn ()), usually optimized into a
hard-coded function call at compile time

" |f called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fcen(); // which version is called?

Is Fen() Yes 5 [FITeIn seqT: +Fen O Yes Dynamic dispatch of
: : marked virtual in . ,
defined in BromisadT of indasses!it most-derived version of
) o Pr -
PromisedT” 2 o A J Fcn () visible to Actuall

[o | o

Compiler Static dispatch of
Error PromisedT::Fcn()

YA/ UNIVERSITY of WASHINGTON

Mixed Dispatch Example

mixed.cc
(class A {)
public:
// ml will use static dispatch

void ml1() { cout << "al, "; }
// m2 will use dynamic dispatch

virtual void m2() { cout << "a2"; }
i A
class B : public A {

public:

void ml1() { cout << "bl, "; }

// m2 is still virtual by default
(\,{r«\-MOVoid m2 () { cout << "b2"; }

U

statie dlspad‘ck based on Pmset) 4)')08
(’YMW{ dgﬁcl\ Lﬂfd on O.C‘I'\A-Al ‘}\/m

L18: C++ Inheritance Il, Casts

CSE333, Winter 2020

(. . ;
void main (int argc,

char** a
A a;
B b; ()romiseé\ ocfia (
A* a ptr a = &a;
A* a_ptr_b &b;
R*
[ER b _ptr b = &b;

rgv) {

h M //(ovnp'\ler eveof

a ptr a->ml(); //Axmi
a ptr a->m2(); //A:m2
a_ptr_b->ml(); //A:ml
a ptr b->m2(); //Buml
b ptr b->ml(); //BimA
b ptr b->m2(); //B:ml
}
.

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Practice Question

+» Whose Foo () is called? test.cc
= \/ote at http://PollEv.com/justinh class A {
public:
A:: Foo void Foo() ;
totic dispatdn ¥
mc@’ W
d\[mm-c dispatch class B : public A {

public:

Di%O(:> <:> [void Bar () {) virtual void Foo() ;
Q1 D d; bi
E e; .
A A* a ptr = &d; ??ass C : public B {
' C* c _ptr = &e; '
ﬁ B ‘ class D : public C {
| — // 01: AnFeo() public:
C D A a_ptr->Foo () ; (virfual) void Foo () ;
D.D B /70 bk | |
c_ptr->Foo() ; class E : public C {
E. We're lost...)]|}

10

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Abstract Classes

+» Sometimes we want to include a function in a class but
only implement it in derived classes
" |nJava, we would use an abstract method

" |n C++, we use a “pure virtual” function

- Example: | virtual string noise() = 0;

+ A class containing any pure virtual methods is abstract
= You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface
" Pure type specification without implementations

11

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

Lecture Outline

% C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors
= Assignment

% C++ Casting

+ Reference: C++ Primer, Chapter 15

CSE333, Winter 2020

12

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Derived-Class Objects

+» A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

+» Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by

DividendStock leldendS—

13

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

- Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

- You can use the initialization list of the derived class to specify which
e —— e —

base class constructor to use

14

YA/ UNIVERSITY of WASHINGTON

Constructor Examples

L18: C++ Inheritance Il, Casts

badctor.cc
[class Base { // no default ctor h
public:
Base (int yi) y(yi) { }
int y;

b

// Compiler error when you try to
// instantiate a Derl, as the

// synthesized default ctor needs
/A to invoke Base's default ctor.
public Base {

public Base {

class Der?2

public:
Der2 (int yi, int zi)
Base (yi), z(zi) { }
int z;

ihvolcess a.JpecﬁfL, eoﬂsfruifov‘

b

\.

goodctor.cc

r// has default ctor
class Base {
public:

int y;

} i

// works now
class Derl
public:

int z;

}i

// still works
class Der2
public:
Der2 (int zi)

int z;

z (zi)

U

public Base

public Base {

{)

~\

CSE333, Winter 2020

15

YA/ UNIVERSITY of WASHINGTON

L18: C++ Inheritance Il, Casts

Destructors and Inheritance

« Destructor of a derived
class:
" First runs body of the dtor

= Then invokes of the dtor
of the base class

+ Static dispatch of
destructors is almost
always a mistake!

" Good habit to always
define a dtor as virtual

- Empty body if there’s
no work to do

CSE333, Winter 2020

baddtor.cc

(class Base |

public:
Base ()
~Base ()
int* x;

{ x

{ 4

}i

class Derl

public:

Derl () { y = new 1nt }

~Derl (delete vy;

int* ZX///’—_*TEEEET’—\\\ij
}; Bo4r

bi st
void foog;j?——\\\ x| yl-

Base* bOptr
Base* blptr

delete bOpt
delete blpt

: public Base {

~N

= new 1nt }
elete x;

> [/
)

new Base;
new Derl;

r; // deletes ¥
r; //

// st d‘s“&fd\

invok e f“B“e(>)

16

CSE333, Winter 2020

YA/ UNIVERSITY of WASHINGTON

L18: C++ Inheritance Il, Casts

Assignment and Inheritance

C++ allows you to assign
the value of a derived
class to an instance of

a base class

= Known as object slicing
- It'slegal sinceb = d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

b

void foo ()
Base b(1l
Derl d(2

d = b;
b = d;

U

slicing.cc
(class Base { b
public:
Base (int xi) : x(xi) { }
Nt x;
}.1n X 1“&3{
class Derl : public Base {
public:
Derl (int y : Base(16), y(yi) { }
int vy;

tx/rﬂ /a)

) .
)
// compiler ewor —not e«agk W
// Ol bd Uhat hagpens * \/7

{

17

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

STL and Inheritance

+» Recall: STL containers store copies of values

®" What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

" You get sliced ®

#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 11i;

1i .push back(s) ; // OK
1i .push back(ds); // OUCH!

return EXIT SUCCESS;

18

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

STL and Inheritance

+ Instead, store pointers to heap-allocated objects in STL
containers vectr {Shck*7

. VAR
= No slicing! © Sm/i Dividerd Stock

" sort () doesthe wrongthing ® — sods on addreses by defautt
" You have to remember to delete your objects before

destroying the container ®
- Smart pointers! =g, vechr < shared ptr dStock>)

19

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

Lecture Outline

% C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors
" Assignment

% C++ Casting

+» Reference: C++ Primer §4.11.3, 19.2.1

CSE333, Winter 2020

20

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Explicit Casting in C

+ Simple syntax:[lhs = (new_type) rhs;]
+ Used to:

= Convert between pointers of arbitrary type (vord ¥) my~pir
- Don’t change the data, but treat differently

" Forcibly convert a primitive type to another (float) my-?v\“'

- Actually changes the representation

% You can still use C-style casting in C++, but sometimes the

intent is not clear
—

21

w UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Casting in C++

+» C++ provides an alternative casting style that is more
informative:

" static cast<to types>(expression)
" dynamic cast<to types>(expression)
" const cast<to types>(expression)

" reinterpret cast<to types>(expression)

+ Always use these in C++ code
" |ntentis clearer

= Easier to find in code via searching

22

YA/ UNIVERSITY of WASHINGTON

L18: C++ Inheritance Il, Casts

static cast

. 0\7\\/ we\\PdefﬁMA Conveys O N
static cast can convert:

R/
0’0

" Pointers to classes of related type

- Compiler error if classes are not related

- Dangerous to cast down a class hierarchy
" Non-pointer conversion

- e.g. float to int

o

static castis

CSE333, Winter 2020

staticcast.cc

[class A |
public:
int x;

¥

class B {

®

public: (E)\\
float x;
}i .
©
class C : public {
public:
char x;

e

\

>

{

void foo ()

checked at compile time Bb; C c;

A* aptr =
static - cost <2
c)\omse the doﬂ' a

refresenfﬁ D ’\

B* bptr

C* cptr

// compiles,

// compiler error (wﬂ%b&do

static cast<A*> (&b) ;

// OK (ww\() have been done cmp\rcﬁl\/)

(&c) ;
but dangerous
(&b) ;

static cast<B*>

static cast<C*>

23

YA/ UNIVERSITY of WASHINGTON

dynamic cast

+« dynamic cast can convert:

= Pointers to classeg of related type
= References to classes of related type

+ dynamic cast ischecked at both

L18: C++ Inheritance Il, Casts

CSE333, Winter 2020

dynamiccast.cc

class Base {

public:
virtual void foo ()
float x;

} i

class Derl
public:
char x;

b

{)

public Base {

compile time and
run time

= Casts between

(void bar() {
Base b; Derl d;

// OK (run-time check passes)

Base* bptr

unrelated classes fail
at compile time

Casts from baseto__<«
derived fail at run”
time if the pointed-to
object is not the

derived type

assert (bptr

Derl* dptr
assert (dptr

// Run-time check fails,

bptr
dptr
assert (dptr

&b;

dynamic cast<Base*> (&d) ;
!= nullptr) ;

\f .
-N§ // OK (run-time check passes)

dynamic cast<Derl*> (bptr) ;
!= nullptr) ;

returns nullptr

dynamic_ cast<Derl*> (bptr) ;

!= nullptr) ;

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

const cast

const cast adds or strips,const-ness
= Dangerous (!)

CSE333, Winter 2020

[void foo (int* x)
*X++;

}

void bar (const int* x)

}

int main(int argc, char** argv) {
int x = 7;
bar (&x) ;
return EXIT SUCCESS;

}

foo (x) ; // compiler error
foo (const cast<int*>(x)); // succeeds

YA/ UNIVERSITY of WASHINGTON

L18: C++ Inheritance Il, Casts

reinterpret cast

o

» relnterpret cast casts between incompatible types
" Low-level reinterpretation of the bit pattern
" e.g. storing a pointerin an int, or vice-versa
- Works as long as the integral type is “wide” enough
"= Converting between incompatible pointers
- Dangerous (!)

- This is used (carefully) in hw3

CSE333, Winter 2020

26

YA/ UNIVERSITY of WASHINGTON L18: C++ Inheritance II, Casts

Extra Exercise #1

+» Design a class hierarchy to represent shapes
= e.qg. Circle, Triangle, Square

+» Implement methods that:

Construct shapes

Move a shape (i.e. add (x,y) to the shape position)
Returns the centroid of the shape

Returns the area of the shape

Print (), which prints out the details of a shape

CSE333, Winter 2020

27

W UNIVERSITY of WASHINGTON L18: C++ Inheritance Il, Casts CSE333, Winter 2020

Extra Exercise #2

+ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):
= Constructs a vector of shapes
= Sorts the vector according to the area of the shape
" Prints out each member of the vector

4

- Notes:

L)

L)

= Avoid slicing!
= Make sure the sorting works properly!

28

