
CSE333, Winter 2020L18: C++ Inheritance II, Casts

C++ Inheritance II, Casts
CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:
Andrew Hu Austin Chan Brennan Stein
Cheng Ni Cosmo Wang Diya Joy
Guramrit Singh Mengqi Chen Pat Kosakanchit
Rehaan Bhimani Renshu Gu Travis McGaha
Zachary Keyes

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Administrivia
 Exercise 14 released today, due Monday
 C++ inheritance with abstract class

 hw3 is due next Thursday (2/27)
 Suggestion: write index files to /tmp/, which is a local scratch

disk and is very fast, but please clean up when you’re done

 Midterm grading
 Submit regrade requests via Gradescope for each subquestion

• These go to different graders
 Regrade requests open until Sunday @ 5 pm (2/23)

2

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Lecture Outline
 C++ Inheritance
 Static Dispatch
 Abstract Classes
 Constructors and Destructors
 Assignment

 C++ Casting

 Reference: C++ Primer, Chapter 15
3

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Reminder: virtual is “sticky”
 If X::f() is declared virtual, then a vtable will be

created for class X and for all of its subclasses
 The vtables will include function pointers for (the correct) f

 f() will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword
 Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code

4

CSE333, Winter 2020L18: C++ Inheritance II, Casts

What happens if we omit “virtual”?
 By default, without virtual, methods are dispatched

statically
 At compile time, the compiler writes in a call to the address of

the class’ method in the .text segment
• Based on the compile-time visible type of the callee

 This is different than Java

5

class Derived : public Base { ... };

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->foo();
bp->foo();
return EXIT_SUCCESS;

}

Derived::foo()
...

Base::foo()
...

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Static Dispatch Example
 Removed virtual on methods:

6

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes Stock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s->GetProfit();

// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit();

double Stock::GetMarketValue() const;
double Stock::GetProfit() const;

Stock.h

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Why Not Always Use virtual?
 Two (fairly uncommon) reasons:
 Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)
• A class with no virtual functions has objects without a vptr field

 Control:
• If f() calls g() in class X and g is not virtual, we’re guaranteed to

call X::g() and not g() in some subclass
– Particularly useful for framework design

 In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

 In C++ and C#, you can pick what you want
 Omitting virtual can cause obscure bugs

7

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Mixed Dispatch
 Which function is called is a mix of both compile time and

runtime decisions as well as how you call the function
 If called on an object (e.g. obj.Fcn()), usually optimized into a

hard-coded function call at compile time
 If called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fcn(); // which version is called?

8

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Mixed Dispatch Example

9

class A {
public:
// m1 will use static dispatch
void m1() { cout << "a1, "; }
// m2 will use dynamic dispatch
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1, "; }
// m2 is still virtual by default
void m2() { cout << "b2"; }

};

void main(int argc,
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1(); //
a_ptr_a->m2(); //

a_ptr_b->m1(); //
a_ptr_b->m2(); //

b_ptr_b->m1(); //
b_ptr_b->m2(); //

}

mixed.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Practice Question
 Whose Foo() is called?
 Vote at http://PollEv.com/justinh

Q1 Q2
A. A A
B. A B
C. D A
D. D B
E. We’re lost…

10

class A {
public:

void Foo();
};

class B : public A {
public:
virtual void Foo();

};

class C : public B {
};

class D : public C {
public:
void Foo();

};

class E : public C {
};

void Bar() {
D d;
E e;
A* a_ptr = &d;
C* c_ptr = &e;

// Q1:
a_ptr->Foo();

// Q2:
c_ptr->Foo();

}

test.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Abstract Classes
 Sometimes we want to include a function in a class but

only implement it in derived classes
 In Java, we would use an abstract method
 In C++, we use a “pure virtual” function

• Example: virtual string noise() = 0;

 A class containing any pure virtual methods is abstract
 You can’t create instances of an abstract class
 Extend abstract classes and override methods to use them

 A class containing only pure virtual methods is the same
as a Java interface
 Pure type specification without implementations

11

virtual string noise() = 0;

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Lecture Outline
 C++ Inheritance
 Static Dispatch
 Abstract Classes
 Constructors and Destructors
 Assignment

 C++ Casting

 Reference: C++ Primer, Chapter 15
12

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Derived-Class Objects
 A derived object contains “subobjects” corresponding to

the data members inherited from each base class
 No guarantees about how these are laid out in memory (not even

contiguousness between subobjects)

 Conceptual structure of DividendStock object:

13

symbol_
total_shares_
total_cost_
current_price_

dividends_

members inherited
from Stock

members defined by
DividendStock

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Constructors and Inheritance
 A derived class does not inherit the base class’

constructor
 The derived class must have its own constructor
 A synthesized default constructor for the derived class first

invokes the default constructor of the base class and then
initialize the derived class’ member variables
• Compiler error if the base class has no default constructor

 The base class constructor is invoked before the constructor of
the derived class
• You can use the initialization list of the derived class to specify which

base class constructor to use

14

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Constructor Examples

15

class Base { // no default ctor
public:
Base(int yi) : y(yi) { }
int y;

};

// Compiler error when you try to
// instantiate a Der1, as the
// synthesized default ctor needs
// to invoke Base's default ctor.
class Der1 : public Base {
public:
int z;

};

class Der2 : public Base {
public:
Der2(int yi, int zi)

: Base(yi), z(zi) { }
int z;

};

badctor.cc
// has default ctor
class Base {
public:
int y;

};

// works now
class Der1 : public Base {
public:
int z;

};

// still works
class Der2 : public Base {
public:
Der2(int zi) : z(zi) { }
int z;

};

goodctor.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Destructors and Inheritance
 Destructor of a derived

class:
 First runs body of the dtor
 Then invokes of the dtor

of the base class

 Static dispatch of
destructors is almost
always a mistake!
 Good habit to always

define a dtor as virtual
• Empty body if there’s

no work to do

16

class Base {
public:
Base() { x = new int; }
~Base() { delete x; }
int* x;

};

class Der1 : public Base {
public:
Der1() { y = new int; }
~Der1() { delete y; }
int* y;

};

void foo() {
Base* b0ptr = new Base;
Base* b1ptr = new Der1;

delete b0ptr; //
delete b1ptr; //

}

baddtor.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Assignment and Inheritance
 C++ allows you to assign

the value of a derived
class to an instance of
a base class
 Known as object slicing

• It’s legal since b = d
passes type checking rules

• But b doesn’t have space
for any extra fields in d

17

class Base {
public:
Base(int xi) : x(xi) { }
int x;

};

class Der1 : public Base {
public:
Der1(int yi) : Base(16), y(yi) { }
int y;

};

void foo() {
Base b(1);
Der1 d(2);

d = b; //
b = d; //

}

slicing.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

STL and Inheritance
 Recall: STL containers store copies of values
 What happens when we want to store mixes of object types in a

single container? (e.g. Stock and DividendStock)
 You get sliced 

18

#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> li;

li.push_back(s); // OK
li.push_back(ds); // OUCH!

return EXIT_SUCCESS;
}

CSE333, Winter 2020L18: C++ Inheritance II, Casts

STL and Inheritance
 Instead, store pointers to heap-allocated objects in STL

containers
 No slicing! 
 sort() does the wrong thing 
 You have to remember to delete your objects before

destroying the container 
• Smart pointers!

19

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Lecture Outline
 C++ Inheritance
 Static Dispatch
 Abstract Classes
 Constructors and Destructors
 Assignment

 C++ Casting

 Reference: C++ Primer §4.11.3, 19.2.1
20

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Explicit Casting in C
 Simple syntax: lhs = (new_type) rhs;
 Used to:
 Convert between pointers of arbitrary type

• Don’t change the data, but treat differently
 Forcibly convert a primitive type to another

• Actually changes the representation

 You can still use C-style casting in C++, but sometimes the
intent is not clear

21

lhs = (new_type) rhs;

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Casting in C++
 C++ provides an alternative casting style that is more

informative:
 static_cast<to_type>(expression)

 dynamic_cast<to_type>(expression)

 const_cast<to_type>(expression)

 reinterpret_cast<to_type>(expression)

 Always use these in C++ code
 Intent is clearer
 Easier to find in code via searching

22

CSE333, Winter 2020L18: C++ Inheritance II, Casts

static_cast

 static_cast can convert:
 Pointers to classes of related type

• Compiler error if classes are not related
• Dangerous to cast down a class hierarchy

 Non-pointer conversion
• e.g. float to int

 static_cast is
checked at compile time

23

class A {
public:
int x;

};

class B {
public:
float x;

};

class C : public B {
public:
char x;

};

void foo() {
B b; C c;

// compiler error
A* aptr = static_cast<A*>(&b);
// OK
B* bptr = static_cast<B*>(&c);
// compiles, but dangerous
C* cptr = static_cast<C*>(&b);

}

staticcast.cc

CSE333, Winter 2020L18: C++ Inheritance II, Casts

dynamic_cast

 dynamic_cast can convert:
 Pointers to classes of related type
 References to classes of related type

 dynamic_cast is checked at both
compile time and
run time
 Casts between

unrelated classes fail
at compile time

 Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

24

void bar() {
Base b; Der1 d;

// OK (run-time check passes)
Base* bptr = dynamic_cast<Base*>(&d);
assert(bptr != nullptr);

// OK (run-time check passes)
Der1* dptr = dynamic_cast<Der1*>(bptr);
assert(dptr != nullptr);

// Run-time check fails, returns nullptr
bptr = &b;
dptr = dynamic_cast<Der1*>(bptr);
assert(dptr != nullptr);

}

dynamiccast.cc
class Base {
public:
virtual void foo() { }
float x;

};

class Der1 : public Base {
public:
char x;

};

CSE333, Winter 2020L18: C++ Inheritance II, Casts

const_cast

 const_cast adds or strips const-ness
 Dangerous (!)

25

void foo(int* x) {
*x++;

}

void bar(const int* x) {
foo(x); // compiler error
foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {
int x = 7;
bar(&x);
return EXIT_SUCCESS;

}

CSE333, Winter 2020L18: C++ Inheritance II, Casts

reinterpret_cast

 reinterpret_cast casts between incompatible types
 Low-level reinterpretation of the bit pattern
 e.g. storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough
 Converting between incompatible pointers

• Dangerous (!)
• This is used (carefully) in hw3

26

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Extra Exercise #1
 Design a class hierarchy to represent shapes
 e.g. Circle, Triangle, Square

 Implement methods that:
 Construct shapes
 Move a shape (i.e. add (x,y) to the shape position)
 Returns the centroid of the shape
 Returns the area of the shape
 Print(), which prints out the details of a shape

27

CSE333, Winter 2020L18: C++ Inheritance II, Casts

Extra Exercise #2
 Implement a program that uses Extra Exercise #1 (shapes

class hierarchy):
 Constructs a vector of shapes
 Sorts the vector according to the area of the shape
 Prints out each member of the vector

 Notes:
 Avoid slicing!
 Make sure the sorting works properly!

28

