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Administrivia

+ Exercise 14 released today, due Monday
= C++inheritance with abstract class

+» hw3 is due next Thursday (2/27)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

+» Midterm grading

= Submit regrade requests via Gradescope for each subquestion
- These go to different graders

= Regrade requests open until Sunday @ 5 pm (2/23)
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Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors
" Assignment

% C++ Casting

+ Reference: C++ Primer, Chapter 15

CSE333, Winter 2020
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Reminder: virtual is “sticky”

R/
0’0

4

)

If X::£f () is declared virtual, then a vtable will be
created for class X and for all of its subclasses
= The vtables will include function pointers for (the correct) £

£ () will be called using dynamic dispatch even if
overridden in a derived class without the virtual

keyworc
" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you'll sometimes see both, particularly in older code
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What happens if we omit “virtual”?

+» By default, without virtual, methods are dispatched

statically

= At compile time, the compiler writes in a call to the address of

the class’ method in the . text segment

- Based on the compile-time visible type of the callee

" This is different than Java

[ class Derived : public Base {
int main (int argc, char** argv)
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->foo () ;

{

Derived: : foo ()

bp->foo() ;
return EXIT SUCCESS;

Base: :foo ()
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Static Dispatch Example

+ Removed virtual on methods: Stock h
r~ defined 1w Stk % Diwdedﬁzxk ’

double Stock::GetMarE%tValue() const;
double Stock::GetProgit() const;

C defined in .S‘f'(zls inhere Ly Diidend Stod Glls Get Mgrket Value()

DividendStock dividend () ;
DividendStock* ds = &dividend;
Stock* s = &dividend;

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s->GetMarketValue () ;

// invokes Stock::GetProfit ().
// Stock::GetProfit () invokes Stock::GetMarketValue ().
s->GetProfit () ;

// invokes Stock::GetProfit (), since that method is inherited.
// Stock::GetProfit () invokes Stock::GetMarketValue ().
ds->GetProfit () ;
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Why Not Always Use virtual?

% Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

- If £() callsg () inclass X and g is not virtual, we’re guaranteed to
call X: :g () and not g () in some subclass

— Particularly useful for framework design

- In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

4

D)

L)

<>

» In C++ and C#, you can pick what you want

L)

= Omitting virtual can cause obscure bugs
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Mixed Dispatch

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g. obj . Fcn () ), usually optimized into a
hard-coded function call at compile time

" |f called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fcen(); // which version is called?

Is Fen() Yes 5 [FITeIn seqT: +Fen O Yes Dynamic dispatch of
: : marked virtual in . ,
defined in BromisadT of indasses!it most-derived version of
) o Pr -
PromisedT” 2 o A J Fcn () visible to Actuall

[ o | o

Compiler Static dispatch of
Error PromisedT::Fcn()
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Mixed Dispatch Example

mixed.cc
(class A { )
public:
// ml will use static dispatch

void ml1() { cout << "al, "; }
// m2 will use dynamic dispatch

virtual void m2() { cout << "a2"; }
i A
class B : public A {

public:

void ml1() { cout << "bl, "; }

// m2 is still virtual by default
(\,{r«\-MOVoid m2 () { cout << "b2"; }

U

statie dlspad‘ck based on Pmset) 4)')08
(’YMW{ dgﬁcl\ Lﬂfd on O.C‘I'\A-Al ‘}\/m
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( . . ;
void main (int argc,

char** a
A a;
B b; ()romiseé\ ocfia (
A* a ptr a = &a;
A* a_ptr_b &b;
R*
[ER b _ptr b = &b;

rgv) {

h M //(ovnp'\ler eveof

a ptr a->ml(); //Axmi
a ptr a->m2(); //A:m2
a_ptr_b->ml(); //A:ml
a ptr b->m2(); //Buml
b ptr b->ml(); //BimA
b ptr b->m2(); //B:ml
}
.
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Practice Question

+» Whose Foo () is called? test.cc
= \/ote at http://PollEv.com/justinh class A {
public:
A:: Foo void Foo() ;
totic  dispatdn ¥
mc@’ W
d\[mm-c dispatch class B : public A {

public:

Di%O(:> <:> [ void Bar () { ) virtual void Foo() ;
Q1 D d; bi
E e; .
A A* a ptr = &d; ??ass C : public B {
' C* c _ptr = &e; '
ﬁ B ‘ class D : public C {
| — // 01: AnFeo() public:
C D A a_ptr->Foo () ; (virfual) void Foo () ;
D.D B /70 bk | |
c_ptr->Foo() ; class E : public C {
E. We're lost... ) ]|}

10
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Abstract Classes

+» Sometimes we want to include a function in a class but
only implement it in derived classes
" |nJava, we would use an abstract method

" |n C++, we use a “pure virtual” function

- Example: | virtual string noise() = 0;

+ A class containing any pure virtual methods is abstract
= You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface
" Pure type specification without implementations

11
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Lecture Outline

% C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors
= Assignment

% C++ Casting

+ Reference: C++ Primer, Chapter 15

CSE333, Winter 2020

12
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Derived-Class Objects

+» A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

+» Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by

DividendStock leldendS—

13
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Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

- Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

- You can use the initialization list of the derived class to specify which
e —— e —

base class constructor to use

14
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Constructor Examples
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badctor.cc
[ class Base { // no default ctor h
public:
Base (int yi) y(yi) { }
int y;

b

// Compiler error when you try to
// instantiate a Derl, as the

// synthesized default ctor needs
/A to invoke Base's default ctor.
public Base {

public Base {

class Der?2

public:
Der2 (int yi, int zi)
Base (yi), z(zi) { }
int z;

ihvolcess a.JpecﬁfL, eoﬂsfruifov‘

b

\.

goodctor.cc

r// has default ctor
class Base {
public:

int y;

} i

// works now
class Derl
public:

int z;

}i

// still works
class Der2
public:
Der2 (int zi)

int z;

z (zi)

U

public Base

public Base {

{ )

~\

CSE333, Winter 2020

15
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Destructors and Inheritance

« Destructor of a derived
class:
" First runs body of the dtor

= Then invokes of the dtor
of the base class

+ Static dispatch of
destructors is almost
always a mistake!

" Good habit to always
define a dtor as virtual

- Empty body if there’s
no work to do

CSE333, Winter 2020

baddtor.cc

(class Base |

public:
Base ()
~Base ()
int* x;

{ x

{ 4

}i

class Derl

public:

Derl () { y = new 1nt }

~Derl ( delete vy;

int* ZX///’—_*TEEEET’—\\\ij
}; Bo4r

bi st
void foog;j?——\\\ x| yl-

Base* bOptr
Base* blptr

delete bOpt
delete blpt

: public Base {

~N

= new 1nt }
elete x;

> [/
)

new Base;
new Derl;

r; // deletes ¥
r; //

// st d‘s“&fd\

invok e f“B“e(> )

16
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Assignment and Inheritance

C++ allows you to assign
the value of a derived
class to an instance of

a base class

= Known as object slicing
- It'slegal sinceb = d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

b

void foo ()
Base b(1l
Derl d(2

d = b;
b = d;

U

slicing.cc
(class Base { b
public:
Base (int xi) : x(xi) { }
Nt x;
}.1n X 1“&3{
class Derl : public Base {
public:
Derl (int y : Base(16), y(yi) { }
int vy;

tx/rﬂ /a)

) .
)
//  compiler ewor —not e«agk W
// Ol bd Uhat hagpens * \/7

{

17
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STL and Inheritance

+» Recall: STL containers store copies of values

®" What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

" You get sliced ®

#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 11i;

1i .push back(s) ; // OK
1i .push back(ds); // OUCH!

return EXIT SUCCESS;

18
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STL and Inheritance

+ Instead, store pointers to heap-allocated objects in STL
containers  vectr {Shck*7

. VAR
= No slicing! © Sm/i Dividerd Stock

" sort () doesthe wrongthing ® — sods on addreses by defautt
" You have to remember to delete your objects before

destroying the container ®
- Smart pointers! =g, vechr < shared ptr dStock> )

19
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Lecture Outline

% C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors
" Assignment

% C++ Casting

+» Reference: C++ Primer §4.11.3, 19.2.1

CSE333, Winter 2020

20
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Explicit Casting in C

+ Simple syntax:[lhs = (new_type) rhs;]
+ Used to:

= Convert between pointers of arbitrary type (vord ¥) my~pir
- Don’t change the data, but treat differently

" Forcibly convert a primitive type to another  (float) my-?v\“'

- Actually changes the representation

% You can still use C-style casting in C++, but sometimes the

intent is not clear
—

21
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Casting in C++

+» C++ provides an alternative casting style that is more
informative:

" static cast<to types>(expression)
" dynamic cast<to types>(expression)
" const cast<to types>(expression)

" reinterpret cast<to types>(expression)

+ Always use these in C++ code
" |ntentis clearer

= Easier to find in code via searching

22
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static cast

. 0\7\\/ we\\PdefﬁMA Conveys O N
static cast can convert:

R/
0’0

" Pointers to classes of related type

- Compiler error if classes are not related

- Dangerous to cast down a class hierarchy
" Non-pointer conversion

- e.g. float to int

o

static castis

CSE333, Winter 2020

staticcast.cc

[ class A |
public:
int x;

¥

class B {

®

public: (E)\\
float x;
}i .
©
class C : public {
public:
char x;

e

\

>

{

void foo ()

checked at compile time Bb; C c;

A* aptr =
static - cost <2
c)\omse the doﬂ' a

refresenfﬁ D ’\

B* bptr

C* cptr

// compiles,

// compiler error (wﬂ%b&do

static cast<A*> (&b) ;

// OK (ww\() have been done cmp\rcﬁl\/)

(&c) ;
but dangerous
(&b) ;

static cast<B*>

static cast<C*>

23
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dynamic cast

+« dynamic cast can convert:

= Pointers to classeg of related type
= References to classes of related type

+ dynamic cast ischecked at both

L18: C++ Inheritance Il, Casts
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dynamiccast.cc

class Base {

public:
virtual void foo ()
float x;

} i

class Derl
public:
char x;

b

{ )

public Base {

compile time and
run time

= Casts between

(void bar() {
Base b; Derl d;

// OK (run-time check passes)

Base* bptr

unrelated classes fail
at compile time

Casts from baseto__<«
derived fail at run”
time if the pointed-to
object is not the

derived type

assert (bptr

Derl* dptr
assert (dptr

// Run-time check fails,

bptr
dptr
assert (dptr

&b;

dynamic cast<Base*> (&d) ;
!= nullptr) ;

\f .
-N§ // OK (run-time check passes)

dynamic cast<Derl*> (bptr) ;
!= nullptr) ;

returns nullptr

dynamic_ cast<Derl*> (bptr) ;

!= nullptr) ;
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const cast

const cast adds or strips,const-ness
= Dangerous (!)

CSE333, Winter 2020

[ void foo (int* x)
*X++;

}

void bar (const int* x)

}

int main(int argc, char** argv) {
int x = 7;
bar (&x) ;
return EXIT SUCCESS;

}

foo (x) ; // compiler error
foo (const cast<int*>(x)); // succeeds
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reinterpret cast

o

» relnterpret cast casts between incompatible types
" Low-level reinterpretation of the bit pattern
" e.g. storing a pointerin an int, or vice-versa
- Works as long as the integral type is “wide” enough
"= Converting between incompatible pointers
- Dangerous (!)

- This is used (carefully) in hw3

CSE333, Winter 2020

26
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Extra Exercise #1

+» Design a class hierarchy to represent shapes
= e.qg. Circle, Triangle, Square

+» Implement methods that:

Construct shapes

Move a shape (i.e. add (x,y) to the shape position)
Returns the centroid of the shape

Returns the area of the shape

Print (), which prints out the details of a shape

CSE333, Winter 2020

27
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Extra Exercise #2

+ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):
= Constructs a vector of shapes
= Sorts the vector according to the area of the shape
" Prints out each member of the vector

4

- Notes:

L)

L)

= Avoid slicing!
= Make sure the sorting works properly!

28



