
CSE333, Winter 2020L17: C++ Inheritance I

C++ Inheritance I
CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:
Andrew Hu Austin Chan Brennan Stein
Cheng Ni Cosmo Wang Diya Joy
Guramrit Singh Mengqi Chen Pat Kosakanchit
Rehaan Bhimani Renshu Gu Travis McGaha
Zachary Keyes

CSE333, Winter 2020L17: C++ Inheritance I

Administrivia
 No exercise released today!
 Next exercise on inheritance released on Friday

 hw3 is due in two Thursdays (2/27)
 Get started early!
 Videos for overview and demo (@650) and file debugging (spec)

 Midterm grading: scores released soon
 Exam and sample solution posted on website
 Submit regrade requests via Gradescope for each subquestion

• These go to different graders
 Regrade requests will be similar to exercises (i.e., open 24 hr after

release, close 72 hr after release)
2

CSE333, Winter 2020L17: C++ Inheritance I

Overview of Next Two Lectures
 C++ inheritance
 Review of basic idea (pretty much the same as in Java)
 What’s different in C++ (compared to Java)

• Static vs. dynamic dispatch – virtual functions and vtables (optional)
• Pure virtual functions, abstract classes, why no Java “interfaces”
• Assignment slicing, using class hierarchies with STL

 Casts in C++

 Reference: C++ Primer, Chapter 15
3

CSE333, Winter 2020L17: C++ Inheritance I

Stock Portfolio Example
 A portfolio represents a person’s financial investments
 Each asset has a cost (i.e. how much was paid for it) and a market

value (i.e. how much it is worth)
• The difference between the cost and market value is the profit (or

loss)
 Different assets compute market value in different ways

• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

• A dividend stock is a stock that also has dividend payments
• Cash is an asset that never incurs a profit or loss

4(Credit: thanks to Marty Stepp for this example)

CSE333, Winter 2020L17: C++ Inheritance I

Design Without Inheritance
 One class per asset type:

 Redundant!
 Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

 See sample code in initial.tar
5

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Winter 2020L17: C++ Inheritance I

Inheritance
 A parent-child “is-a” relationship between classes
 A child (derived class) extends a parent (base class)

 Terminology:

 Mean the same things. You’ll hear both.

6

Java C++
Superclass Base Class
Subclass Derived Class

CSE333, Winter 2020L17: C++ Inheritance I

Inheritance
 A parent-child “is-a” relationship between classes
 A child (derived class) extends a parent (base class)

 Benefits:
 Code reuse

• Children can automatically inherit code from parents
 Polymorphism

• Ability to redefine existing behavior but preserve the interface
• Children can override the behavior of the parent
• Others can make calls on objects without knowing which part of the

inheritance tree it is in
 Extensibility

• Children can add behavior
7

CSE333, Winter 2020L17: C++ Inheritance I

Design With Inheritance

8

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Asset (abstract)

GetMarketValue()
GetProfit()
GetCost()

CSE333, Winter 2020L17: C++ Inheritance I

Like Java: Access Modifiers
 public: visible to all other classes
 protected: visible to current class and its derived

classes
 private: visible only to the current class

 Use protected for class members only when
 Class is designed to be extended by derived classes
 Derived classes must have access but clients should not be

allowed

9

CSE333, Winter 2020L17: C++ Inheritance I

Class Derivation List
 Comma-separated list of classes to inherit from:

 Focus on single inheritance, but multiple inheritance possible

 Almost always you will want public inheritance
 Acts like extends does in Java
 Any member that is non-private in the base class is the same in

the derived class; both interface and implementation inheritance
• Except that constructors, destructors, copy constructor, and

assignment operator are never inherited

10

#include "BaseClass.h"

class Name : public BaseClass {
...

};

CSE333, Winter 2020L17: C++ Inheritance I

Back to Stocks

BASE DERIVED

11

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Winter 2020L17: C++ Inheritance I

Polymorphism in C++
 In Java: PromisedType var = new ActualType();

 var is a reference (different term than C++ reference) to an
object of ActualType on the Heap

 ActualType must be the same class or a subclass of
PromisedType

 In C++: PromisedType* var_p = new ActualType();

 var_p is a pointer to an object of ActualType on the Heap
 ActualType must be the same or a derived class of
PromisedType

 (also works with references)

 PromisedType defines the interface (i.e. what can be called on
var_p), but ActualType may determine which version gets
invoked

12

CSE333, Winter 2020L17: C++ Inheritance I

Back to Stocks

 A derived class:
 Inherits the behavior and state (specification) of the base class
 Overrides some of the base class’ member functions (opt.)
 Extends the base class with new member functions, variables

(opt.)

13

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

dividends_

GetMarketValue()
GetProfit()
GetCost()

PayDividend()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Winter 2020L17: C++ Inheritance I

Dynamic Dispatch (like Java)
 Usually, when a derived function is available for an object,

we want the derived function to be invoked
 This requires a run time decision of what code to invoke

 A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type
 Can determine what to invoke from the object itself

 Example:
 void PrintStock(Stock* s) { s->Print(); }

 Calls the appropriate Print() without knowing the actual type
of *s, other than it is some sort of Stock

14

CSE333, Winter 2020L17: C++ Inheritance I

Requesting Dynamic Dispatch (C++)
 Prefix the member function declaration with the
virtual keyword
 Derived/child functions don’t need to repeat virtual, but was

traditionally good style to do so
 This is how method calls work in Java (no virtual keyword needed)
 You almost always want functions to be virtual

 override keyword (C++11)
 Tells compiler this method should be overriding an inherited

virtual function – always use if available
 Prevents overloading vs. overriding bugs

 Both of these are technically optional in derived classes
 Be consistent and follow local conventions (Google Style Guide

says no virtual if override)
15

CSE333, Winter 2020L17: C++ Inheritance I

Dynamic Dispatch Example
 When a member function is invoked on an object:
 The most-derived function accessible to the object’s visible type is

invoked (decided at run time based on actual type of the object)

16

double DividendStock::GetMarketValue() const {
return get_shares() * get_share_price() + dividends_;

}

double "DividendStock"::GetProfit() const { // inherited
return GetMarketValue() – GetCost();

}

double Stock::GetMarketValue() const {
return get_shares() * get_share_price();

}

double Stock::GetProfit() const {
return GetMarketValue() – GetCost();

}

DividendStock.cc

Stock.cc

CSE333, Winter 2020L17: C++ Inheritance I

Dynamic Dispatch Example

17

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes DividendStock::GetMarketValue(),
// since that is the most-derived accessible function.
s->GetProfit();

CSE333, Winter 2020L17: C++ Inheritance I

Most-Derived

18

class A {
public:
// Foo will use dynamic dispatch
virtual void Foo();

};

class B : public A {
public:
// B::Foo overrides A::Foo
virtual void Foo();

};

class C : public B {
// C inherits B::Foo()

};

void Bar() {
A* a_ptr;
C c;

a_ptr = &c;

// Whose Foo() is called?
a_ptr->Foo();

}

CSE333, Winter 2020L17: C++ Inheritance I

Practice Question
 Whose Foo() is called?
 Vote at http://PollEv.com/justinh

Q1 Q2
A. A B
B. A D
C. B B
D. B D
E. We’re lost…

19

class A {
public:
virtual void Foo();

};

class B : public A {
public:
virtual void Foo();

};

class C : public B {
};

class D : public C {
public:
virtual void Foo();

};

class E : public C {
};

void Bar() {
A* a_ptr;
C c;
E e;

// Q1:
a_ptr = &c;
a_ptr->Foo();

// Q2:
a_ptr = &e;
a_ptr->Foo();

}

CSE333, Winter 2020L17: C++ Inheritance I

How Can This Possibly Work?
 The compiler produces Stock.o from just Stock.cc
 It doesn’t know that DividendStock exists during this process
 So then how does the emitted code know to call
Stock::GetMarketValue() or
DividendStock::GetMarketValue()
or something else that might not exist yet?
• Function pointers!!!

20

double Stock::GetMarketValue() const {
return get_shares() * get_share_price();

}

double Stock::GetProfit() const {
return GetMarketValue() – GetCost();

} Stock.cc

virtual double Stock::GetMarketValue() const;
virtual double Stock::GetProfit() const;

Stock.h

CSE333, Winter 2020L17: C++ Inheritance I

vtables and the vptr
 If a class contains any virtual methods, the compiler

emits:
 A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class
• The pointers in the vtable point to the most-derived function for that

class
 A virtual table pointer (vptr) for each object instance

• A pointer to a virtual table as a “hidden” member variable
• When the object’s constructor is invoked, the vptr is initialized to

point to the vtable for the object’s class
• Thus, the vptr “remembers” what class the object is

21

CSE333, Winter 2020L17: C++ Inheritance I

code for Point()

code for Point’s samePlace()
Point vtable:

xvtable ptr yheader

Point object

p ???

351 Throwback: Dynamic Dispatch

22

Point p = ???;
return p.samePlace(q);

// works regardless of what p is
return p->vtable[1](p, q);

Java: C pseudo-translation:

code for 3DPoint’s samePlace()

code for sayHi()

xvtable yheader

3DPoint object
z

3DPoint vtable:

CSE333, Winter 2020L17: C++ Inheritance I

vtable/vptr Example

23

class Base {
public:
virtual void f1();
virtual void f2();

};

class Der1 : public Base {
public:
virtual void f1();

};

class Der2 : public Base {
public:
virtual void f2();

};

Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &b;
Base* b1ptr = &d1;
Base* b2ptr = &d2;

b0ptr->f1(); //
b0ptr->f2(); //

b1ptr->f1(); //
b1ptr->f2(); //

d2.f1(); //
b2ptr->f1(); //
b2ptr->f2(); //

CSE333, Winter 2020L17: C++ Inheritance I

vtable/vptr Example

24

Base b;
Der1 d1;
Der2 d2;

Base* b2ptr = &d2;

d2.f1();
// d2.vptr -->
// Der2.vtable.f1 -->
// Base::f1()

b2ptr->f1();
// b2ptr -->
// d2.vptr -->
// Der2.vtable.f1 -->
// Base::f1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base
f1()
f2()

Der1
f1()
f2()

Der2
f1()
f2()

Base::f1()
push %rbp
...

Base::f2()
push %rbp
...

Der1::f1()
push %rbp
...

Der2::f2()
push %rbp
...

CSE333, Winter 2020L17: C++ Inheritance I

Let’s Look at Some Actual Code
 Let’s examine the following code using objdump
 g++ -Wall –g –std=c++11 -o vtable vtable.cc

 objdump -CDS vtable > vtable.d

25

class Base {
public:
virtual void f1();
virtual void f2();

};

class Der1 : public Base {
public:
virtual void f1();

};

int main(int argc, char** argv) {
Der1 d1;
d1.f1();
Base* bptr = &d1;
bptr->f1();

}

vtable.cc

CSE333, Winter 2020L17: C++ Inheritance I

More to Come Next Time!
 Any lingering questions?

26

