YA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro

CSE333, Winter 2020

C++ STL, Smart Pointers Intro

CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:

Andrew Hu Austin Chan
Cheng Ni Cosmo Wang
Guramrit Singh Mengqi Chen
Rehaan Bhimani Renshu Gu

Zachary Keyes

Brennan Stein
Diya Joy

Pat Kosakanchit
Travis McGaha

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

Administrivia

+» Exercise 12a released today, due Wednesday
" Practice using map

+» Midterm is Friday (2/14) @ 5 - 6:10 pm in KNE 210/220
"= No lecture on Friday!

*= 1 double-sided page of handwritten notes;
reference sheet provided on exam

= Topics: everything from lecture, exercises, project, etc. up
through hw2 and C++ templates

® Old exams on course website, review in section this week

w UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

Lecture Outline

% STL (finish)
= List
" Map
+» Smart Pointers Intro

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

STL1list

+~ A generic doubly-linked list

" http://www.cplusplus.com/reference/stl/list/

= Elements are not stored in contiguous memory locations
- Does not support random access (e.g. cannotdo 1ist [5])
= Some operations are much more efficient than vectors
- Constant time insertion, deletion anywhere in list
- Can iterate forward or backwards
" Has a built-in sort member function

- Doesn’t copy! Manipulates list structure instead of element values

CSE333, Winter 2020

YA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro

list Example

listexample.cc

(#include <list>
f#include <algorithm>
#include "Tracer.h"
using namespace std;

volid PrintOut (const Traceré& p) {
cout << " printout: " << p << endl;

}

int main(int argc, char** argv) {
Tracer a, b, c;
list<Tracer> 1lst;

lst.push back (c);

lst.push back(a) ;

lst.push back (b) ;

cout << "sort:" << endl;

lst.sort () ;

cout << "done sort!" << endl;

for each(lst.begin(), lst.end(), &PrintOut);
return EXIT SUCCESS;

~\

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

STL map

+» One of C++’s associative containers: a key/value table,
implemented as a search tree

" http://www.cplusplus.com/reference/stl/map/

= General form: |map<key type, value type> name;

= Keys must be unique
- multimap allows duplicate keys

= Efficient lookup (O(logn)) and insertion (O (logn))

« Access value via name [key]

" Elements are type pair<key type, value type>andare
stored in sorted order (key is field £irst, value is field second)

- Key type must support less-than operator (<)

YA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro

map Example

CSE333, Winter 2020

mapexample.cc

(void PrintOut (const pair<Tracer, Tracer>& p) {

}

int main(int argc, char** argv) {
Tracer a, b, ¢, d, e, £;
map<Tracer, Tracer> table;
map<Tracer, Tracer>::iterator 1it;

table.insert (pair<Tracer, Tracer>(a, b));

table[c] = d;
table[e] = £f;
cout << "tablele]:" << table[e] << endl;

it = table.find(c) ;

cout << "PrintOut (*it), where it = table.find(c)"
PrintOut (*it) ;

cout << "ilterating:" << endl;
for each(table.begin (), table.end(), &PrintOut);

return EXIT_SUCCESS;

cout << "printout: [" << p.first << "," << p.second << "]" << endl;

<< endl;

~\

w UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

Basic map Usage

& animals.cc

w UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

Homegrown pair<>

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

Unordered Containers (C++11)

+ unordered map, unordered set

" And related classes unordered multimap,
unordered multiset

= Average case for key access is 0(1)
- But range iterators can be less efficient than ordered map/set

= See C++ Primer, online references for details

10

w UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

Lecture Outline

2 STL (finish)
= |ist
" Map
+» Smart Pointers Intro

11

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

Motivation

+» We noticed that STL was doing an enormous amount of
copying

+ A solution: store pointers in containers instead of objects

" But who's responsible for deleting and when???

12

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

C++ Smart Pointers

+» A smart pointer is an object that stores a pointer to a
heap-allocated object
= A smart pointer looks and behaves like a regular C++ pointer
- By overloading *, =>, [], etc.
" These can help you manage memory

- The smart pointer will delete the pointed-to object at the right time
including invoking the object’s destructor

— When that is depends on what kind of smart pointer you use

- With correct use of smart pointers, you no longer have to remember
when to delete new’'d memory!

13

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

A Toy Smart Pointer

+» We can implement a simple one with:
= A constructor that accepts a pointer

= A destructor that frees the pointer
" QOverloaded * and —> operators that access the pointer

14

YA/ UNIVERSITY of WASHINGTON

ToyPtr Class Template

L15: C++ STL, Smart Pointers Intro

ToyPtr.cc

\.

7~

#ifndef TOYPTR H
#define TOYPTR H

template <typename T> class ToyPtr {
public:

ToyPtr (T* ptr) : ptr (ptr) { }

~ToyPtr () { delete ptr ; }

T& operator* () { return *ptr ; }

T* operator->() { return ptr ; }
private:

T* ptr ;

b g

#endif // TOYPTR H

//
//

//
//

//

constructor
destructor

* operator
—-> operator

the pointer itself

~

CSE333, Winter 2020

15

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

ToyPtr Example

usetoy.cc
~

- .
#include <iostream>
#include "ToyPtr.h"

// simply struct to use

typedef struct { int x =1, y = 2; } Point;

std::ostream &operator<<(std::ostream &out, const Point &rhs) {
return out << "(" << rhs.x << "," << rhs.y << ")";

}

int main(int argc, char **argv) {
// Create a dumb pointer
Point *leak = new Point;

// Create a "smart" pointer (OK, it's still pretty dumb)
ToyPtr<Point> notleak (new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " “Fnotleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return EXIT_SUCCESS;

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

What Makes This a Toy?

+» Can’t handle:
" Arrays
"= Copying
" Reassignment
" Comparison
= .. plus many other subtleties...

+ Luckily, others have built non-toy smart pointers for us!
" More next lecture!

17

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

Extra Exercise #1

+ Take one of the books from HW2'’s test tree and:

= Read in the book, split it into words (you can use your hw2)
" For each word, insert the word into an STLmap

- The key is the word, the value is an integer

- The value should keep track of how many times you’ve seen the word,
so each time you encounter the word, increment its map element

 Thus, build a histogram of word count
= Print out the histogram in order, sorted by word count

®= Bonus: Plot the histogram on a log-log scale (use Excel, gnuplot,
etc.)

- x-axis: log(word number), y-axis: log(word count)

18

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers Intro CSE333, Winter 2020

Extra Exercise #2

+ Implement Triple, a class template that contains three
“things,” i.e. it should behave like std: : pair but hold 3
objects instead of 2
" The “things” can be of different types

+» Write a program that:
" |nstantiates several Triples that contain ToyPtr<int>s
" Insertthe Triplesintoavector
= Reverse the vector

= Doesn’t have any memory errors (use Valgrind!)
= Note: You will need to update ToyPtr.h —how?

19

