YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

CSE333, Winter 2020

C++ Class Details, Heap

CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:

Andrew Hu Austin Chan
Cheng Ni Cosmo Wang
Guramrit Singh Mengqi Chen
Rehaan Bhimani Renshu Gu

Zachary Keyes

Brennan Stein
Diya Joy

Pat Kosakanchit
Travis McGaha

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Administrivia

+» Exercise 11 released today, due Wednesday

®" Modify your Vector class to use the heap & non-member
functions

= Referto Complex.h/Complex.ccand Str.h/Str.cc

+» Homework 2 due Thursday (2/6)

" File system crawler, indexer, and search engine

" Don’t forget to clone your repo to double-/triple-/quadruple-
check compilation!

+» Midterm: next Friday (2/14) from 5 - 6:10 pm in KNE
210/220

= Alt exams have also been scheduled

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Lecture Outline

+ Class Details

" Filling in some gaps from last time
% Using the Heap

" new/delete/delete]]

YA/ UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

Rule of Three

If you define any of:
Destructor

2) Copy Constructor
3) Assignment (operator=)

+» Then you should normally define all three

CSE333, Winter 2020

= Can explicitly ask for default synthesized versions (C++11):

(class Point {
public:
Point ()

~Point ()

default;
default;
Point (const Pointé& copyme)
Point& operator=(const Pointé& rhs)

default;
default; //

the default
the default
the default
the default

cctor

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Dealing with the Insanity (C++11)

+» C++ style guide tip:
= Disabling the copy constructor and assignment operator can avoid
confusion from implicit invocation and excessive copying

Point_2011.h
rclass Point { b
public:
Point (const int x, const int y) : x (x), vy (y) { } // ctor
Point (const Point& copyme) = delete; // declare cctor and "=" as
Point& operator=(const Point& rhs) = delete; // as deleted (C++11)
private:
}Y; // class Point
Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = X; // compiler error (no assignment operator)
Q J

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Clone

/
0’0

C++11 style guide tip:

" |f you disable them, then you instead may want an explicit
“Clone” function that can be used when occasionally needed

\

Point_2011.h
rclass Point {)
public:
Point (const int x, const int y) : x (x), v (y) { } // ctor
void Clone (const Point& copy from me) ;
Point (Point& copyme) = delete; // disable cctor
Point& operator=(Point& rhs) = delete; // disable "="

private:

}; // class Point

S

sanepoint.cc

Point x(1, 2); // OK
Point vy (3, 4); // OK
x.Clone(y); // OK

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Access Control

% Access modifiers for members:
= public:accessible to all parts of the program
" private: accessible to the member functions of the class
- Private to class, not object instances

" protected: accessible to member functions of the class and
any derived classes (subclasses — more to come, later)

+ Reminders:

= Access modifiers apply to all members that follow until another
access modifier is reached

" |If no access modifier is specified, st ruct members default to
publicand class members defaulttoprivate

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Nonmember Functions

» “Nonmember functions” are just normal functions that

happen to use some class

= Called like a regular function instead of as a member of a class
object instance
- This gets a little weird when we talk about operators...

*" These do not have access to the class’ private members

+» Useful nonmember functions often included as part of

interface to a class
= Declaration goes in header file, but outside of class definition

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

friend Nonmember Functions

+» A class can give a nonmember function (or class) access to
its non-public members by declaringitasa friend
within its definition
"= Not a class member, but has access privileges as if it were

"= friend functions are usually unnecessary if your class includes

appropriate “getter” public functions

Complex.h
~

-
class Complex {
friend std::istreamé& operator>>(std::istream& in, Complexé& a);

L }; // class Complex

rstd::istream& operator>>(std::istream& 1in, Complex& a) {

}

\ J

Complex.cc

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Namespaces

+» Each namespace is a separate scope

= Useful for avoiding symbol collisions!

+» Namespace definition:

4)
" | namespace name {

// declarations go here
| // namespace name

J

"= Doesn’t end with a semi-colon and doesn’t add to the indentation
of its contents

" Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)

- This means that components (e.g. classes, functions) of a namespace
can be defined in multiple source files

10

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Classes vs. Namespaces

+» They seems somewhat similar, but classes are not
namespaces:

= There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

" To access a member of a namespace, you must use the fully
qualified name (i.e. nsp name: :member)

- Unless you are using that namespace

- You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

11

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Complex Example Walkthrough

See:
Complex.h
Complex.cc

testcomplex.cc

12

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Lecture Outline

« Class Details

" Filling in some gaps from last time
% Using the Heap
" new/delete /delete[]

13

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

C++11l nullptr

% Cand C++ have long used NULL as a pointer value that
references nothing

% C++11 introduced a new literal for this: nullptr

" New reserved word

" |nterchangeable with NUL L for all practical purposes, but it has
type T* for any/every T, and is not an integer value

- Avoids funny edge cases (see C++ references for details)
- Still can convert to/from integer O for tests, assignment, etc.

= Advice: prefer nul lptr in C++11 code
« Though NULL will also be around for a long, long time

14

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

new/delete

+» To allocate on the heap using C++, you use the new
keyword instead of malloc () from stdlib.h
" You can use new to allocate an object (e.g. new Point)
" You can use new to allocate a primitive type (e.g. new int)

+» To deallocate a heap-allocated object or primitive, use the
delete keyword instead of £free () from stdlib.h

"= Don’t mix and match!
- Never £ree () something allocated with new
- Never delete something allocated withmalloc ()
- Careful if you're using a legacy C code library or module in C++

15

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

new/delete Example

rint* AllocateInt(int x) { h rPoint* AllocatePoint (int x, int y) {N
int* heapy int = new int; Point* heapy pt = new Point(x,y);
*heapy int = x; return heapy pt;
return heapy int; }

U J \U y,

heappoint.cc

r#include "Point.h"

// definitions of AllocateInt () and AllocatePoint ()

int main() {
Point* x = AllocatePoint(l, 2);
int* y = AllocateInt (3);

cout << "x's x coord: " << x->get x() << endl;
cout << "y: " KLy <", Ay KL Fy << endl;

delete x;
delete y;
return EXIT_SUCCESS;

\

16

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Dynamically Allocated Arrays

% To dynamically allocate an array:

= Defaultinitialize: | type* name = new typel[size];

% To dynamically deallocate an array:

" Use|delete[] name;

" |tisanincorrectto use “delete name;” on an array

- The compiler probably won’t catch this, though (!) because it can’t
always tell if name* was allocated with new typel[size];
or new type;

— Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

- Result of wrong delete is undefined behavior

CSE333, Winter 2020

17

YA/ UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

Arrays Example (primitive)

CSE333, Winter 2020

arrays.cc

. .
#include "Point.h"

int main () {
int stack int;
int* heap int =
int* heap int init =

new int;
new int(12);

int stack arr[3];
int* heap arr = new int[3];

int* heap arr init val = new 1nt[3] ()
int* heap arr init 1lst = new 1int([3] {4,
delete heap int; //
delete heap int init; //
delete heap arr; //

delete[] heap arr init wval; //

return EXIT SUCCESS;

5};

// C++11

~

18

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Arrays Example (class objects)

CSE333, Winter 2020

arrays.cc

r#include "Point.h"

int main () {

Point stack pt(l, 2);
Point* heap pt = new Point(l, 2);

Point* heap pt arr err = new Point[2];

Point* heap pt arr init 1lst = new Point[2]{{1,

delete heap pt;
delete[] heap pt arr init 1st;

return EXIT_SUCCESS;

\

2}y, {3, 4}};
// C++11

19

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

malloc vs. new

reiioc) | ner
a function an operator or keyword

arrays, structs, objects,

Allocated memory for anything L
primitives
RetUrns avoid* appropriate pointer type
(should be cast) (doesn’t need a cast)
When out of memory returns NULL throws an exception

Deallocating free () deleteordelete[]

20

YA/ UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

Dynamically Allocated Class Members

+» What will happen when we invoke baxr () ?
= \/ote at http://PollEv.com/justinh

" |f thereis an error,
how would you fix it?

A.
B. Bad delete

C. Memory leak
D. “Works” fine

E. We're lost...

e

Foo::Foo(int wval) { Init(val),; }
Foo::~Foo () { delete foo ptr ; }

vold Foo::Init(int wval) {
foo ptr =
*foo ptr =
}

new int;
val;

Foo& Foo::operator=(const Foo& rhs)
delete foo ptr ;
Init(* (rhs.foo ptr));
return *this;

}

Foo a(10)
Foo b (20)
a = a;

void bar () {

{

CSE333, Winter 2020

21

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Heap Member Example

+» Let’s build a class to simulate some of the functionality of
the C++ string

" |nternal representation: c-string to hold characters

+» What might we want to implement in the class?

22

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Str Class Walkthrough

CSE333, Winter 2020

Str.h

(e .
#include <iostream>
using namespace std;

class Str {

public:
Str () ; // default ctor
Str (const char* s); // c-string ctor
Str (const Str& s); // copy ctor
~Str () ; // dtor

int length() const; // return length of string
char* ¢ str() const; // return a copy of st_
volid append (const Stré& s);

private:
char* st ; // c-string on heap (terminated by
\}; // class Str

Str& operator=(const Str& s); // string assignment

friend std::ostreamé& operator<<(std::ostream& out, const Str& s);

"\0")

23

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Str::append

+~ Complete the append () member function:

" char* strncpy(char* dst, char* src, size t num);

" char* strncat(char* dst, char* src, size t num);

[#include <cstring>

#include "Str.h"

// append contents of s to the end of this string
void Str::append(const Str& s) |

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Extra Exercise #1

« Write a C++ function that:

= Uses new to dynamically allocate an array of strings and uses
delete[] tofreeit

= Uses new to dynamically allocate an array of pointers to strings

- Assign each entry of the array to a string allocated using new

= Cleans up before exiting
- Use delete to delete each allocated string
- Uses delete[] to delete the string pointer array

- (whew!)

25

