YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

CSE333, Winter 2020

C++ Class Details, Heap

CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:

Andrew Hu Austin Chan
Cheng Ni Cosmo Wang
Guramrit Singh Mengqi Chen
Rehaan Bhimani Renshu Gu

Zachary Keyes

Brennan Stein
Diya Joy

Pat Kosakanchit
Travis McGaha

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Administrivia

+» Exercise 11 released today, due Wednesday

®" Modify your Vector class to use the heap & non-member
functions

= Referto Complex.h/Complex.ccand Str.h/Str.cc

+» Homework 2 due Thursday (2/6)

" File system crawler, indexer, and search engine

" Don’t forget to clone your repo to double-/triple-/quadruple-
check compilation!

+» Midterm: next Friday (2/14) from 5 - 6:10 pm in KNE
210/220

= Alt exams have also been scheduled

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Lecture Outline

+ Class Details

" Filling in some gaps from last time
% Using the Heap

" new/delete/delete]]

YA/ UNIVERSITY of WASHINGTON

L12: C++ Class Details, Heap

Rule of Three

If you define any of:
Destructor

2) Copy Constructor
3) Assignment (operator=)

+» Then you should normally define all three

CSE333, Winter 2020

= Can explicitly ask for default synthesized versions (C++11):

(class Point {
public:
Point ()

~Point ()

default;
default;
Point (const Pointé& copyme)
Point& operator=(const Pointé& rhs)

default;
default; //

the default
the default
the default
the default

cctor

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Dealing with the Insanity (C++11)

+» C++ style guide tip:
= Disabling the copy constructor and assignment operator can avoid
confusion from implicit invocation and excessive copying

Point_2011.h
rclass Point { b
public:
Point (const int x, const int y) : x (x), vy (y) { } // ctor
Point (const Point& copyme) = delete; // declare cctor and "=" as
Point& operator=(const Point& rhs) = delete; // as deleted (C++11)
private:
}Y; // class Point
Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = X; // compiler error (no assignment operator)
Q J

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Clone

/
0’0

C++11 style guide tip:

" |f you disable them, then you instead may want an explicit
“Clone” function that can be used when occasionally needed

\

Point_2011.h
rclass Point {)
public:
Point (const int x, const int y) : x (x), v (y) { } // ctor
void Clone (const Point& copy from me) ;
Point (Point& copyme) = delete; // disable cctor
Point& operator=(Point& rhs) = delete; // disable "="

private:

}; // class Point

S

sanepoint.cc

Point x(1, 2); // OK
Point vy (3, 4); // OK
x.Clone(y); // OK

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Access Control

% Access modifiers for members:
= public:accessible to all parts of the program
" private:accessible to the member functions of the class

- Private to class, not object instances

" protected: accessible to member functions of the class and
any derived classes (subclasses — more to come, later)

+ Reminders:

= Access modifiers apply to all members that follow until another
access modifier is reached

" |If no access modifier is specified, st ruct members default to
publicand class members defaulttoprivate

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Nonmember Functions

“Nonmember functions” are just normal functions that

happen to use some class

= Called like a regular function instead of as a member of a class
object instance
- This gets a little weird when we talk about operators...

= These do not have access to the class’ private members(M)’m 11Wj« getks)

Useful nonmember functions often included as part of

interface to a class
o D% claration goes in header file, but outside of class definition

Hember Non-member
nomed f dOU\b'e PO)Y\+ le’fdnce(Pom“'&) ouble D.s!’ance (PO\""nL POW\T&)
dndml pti. Dn.s"'ancec TZ) Dls‘\’ancec 1, ‘|‘2~)
§ Float Vecror: 09m+ (Ve::hx& " Hogt ofe,mr* (ved.,, lx Vet &) ;

Pm;\or
° I_ vec | * vec 2 ; <~ +c:a_l > vecl* vec L

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

friend Nonmember Functions

+» A class can give a nonmember function (or class) access to
its non-public members by declaringitasa friend
within its definition
"= Not a class member, but has access privileges as if it were

"= friend functions are usually unnecessary if your class includes

appropriate “getter” public functions

Complex.h
~

rclass Complex {

dcdarod‘\'lh on l‘/

o

friend std::istreamé& operator>>(std::istream& in, Complexé& a);

L }; // class Complex

rstd::istream& operator>>(std::istream& 1in, Complex& a) {

} Oefindom ontside & c,\as;

\ J

Complex.cc

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Namespaces
+» Each namespace is a separate scope LL: Ttergbor | Sime name,
- « Je . . | HT:1+WCC‘OF Lvd' ([N A}ﬁcnvf\’
Useful for avoiding symbol collisions! namegpices

+» Namespace definition:

4)
" | namespace name {

// declarations go here

\K) // namespace name
\—,no) . . , . .
" Doesn’t end with a semi-colon and doesn’t add to the indentation

of its contents
" Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)

J

- This means that components (e.g. classes, functions) of a namespace
can be defined in multiple source files

10

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Classes vs. Namespaces

+» They seems somewhat similar, but classes are not
namespaces:

= There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

" To access a member of a namespace, you must use the fully
qualified name (i.e. nsp name: :member)

- Unless you are using that namespace

- You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

11

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Complex Example Walkthrough

See:
Complex.h
Complex.cc

testcomplex.cc

12

w UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Lecture Outline

« Class Details

" Filling in some gaps from last time
% Using the Heap
" new/delete /delete[]

13

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

C++11l nullptr

‘/‘O (;/\47 pbin'hv?.)

% Cand C++ have long used NULTL as a pointer value that
references nothing

% C++11 introduced a new literal for this: nullptr

" New reserved word

" |nterchangeable with NUL L for all practical purposes, but it has
typ or any/every T, and is not an integer value

- Avoids funny edge cases (see C++ references for details)
- Still can convert to/from integer O for tests, assignment, etc.

= Advice: prefer nul lptr in C++11 code
« Though NULL will also be around for a long, long time

14

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

new/delete

+» To allocate on the heap using C++, you use the new
keyword instead of malloc () from stdlib.h
" You can use new to allocate an object (e.g. new Point)
" You can use new to allocate a primitive type (e.g. new int)

+» To deallocate a heap-allocated object or primitive, use the
delete keyword instead of £free () from stdlib.h

"= Don’t mix and match!
- Never £ree () something allocated with new
- Never delete something allocated withmalloc ()
- Careful if you're using a legacy C code library or module in C++

15

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

new/delete Example

rint* AllocateInt(int x) { h rPoint* AllocatePoint (int x, int y) {N
int* heapy int = new int; Point* heapy pt = new Point(x,y);
*heapy int = x; return heapy pt;
return heapy int; }

U J \U y,

heappoint.cc

r#include "Point.h"

// definitions of AllocateInt () and AllocatePoint ()

int main() {
Point* x = AllocatePoint(l, 2);
int* y = AllocateInt (3);

cout << "x's x coord: " << x->get x() << endl;
cout << "y: " KLy <", Ay KL Fy << endl;

delete x;
delete y;
return EXIT_SUCCESS;

\

16

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Dynamically Allocated Arrays

% To dynamically allocate an array:

= Defaultinitialize: | type* name = new typel[size];

/Cv\ew sti\ retuns & poif\’fer
% To dynamically deallocate an array:

" Use|delete[] name; /

(S ths & Fuin+er b < ’}Nnj
oY Oon Nra\/ 5'(‘H\'./\Sg,f

" |tisanincorrectto use “delete name;” onan array

- The compiler probably won’t catch this, though (!) because it can’t
always tell if name* was allocated with new typel[size];
or new type;

— Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

- Result of wrong delete is undefined behavior

CSE333, Winter 2020

17

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Arrays Example (primitive)

arrays.cc

a \ \ N
#include "Point.h"

int main () {

int stack int; /] stack
int* heap int = new int; // keaf (Q)N'bk&e)
int* heap int init = new int(12); ‘é’keap (ﬁduelZ)

int stack arr[3]; //shk
int* heap arr = new int[3]; // heap Csﬁ'l’“ﬂe)

./ heap (Vawes Q)

int* heap arr init val = new 1int[3] ();
int* heap arr init 1lst = new int([3]{4, 5}; // C++11
- Y heap(inHalizest £45.03)
/
delete heap int; //CONK*V
delete heap int init; //cona%'

delete heap arr; |
delete[] heap arr init val; //waﬁj.

// Memor lﬂﬁ\k GF l’\fq -0, ’m'r\‘__ ls"f !
return EXIT SUCCESS;

18

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Arrays Example (class objects)

CSE333, Winter 2020

delete heap pt; //coned'
delete[] heap pt arr init 1lst; //corveC\‘

return EXIT_SUCCESS;

L

/) erroc!

Point* heap pt arr init 1lst = new Point[2]{{1l, 2}, {3, 4}};

no defsutt consTradde in

// C++11

arrays.cc
[#include "Point.h" N
int main () {
Point stack pt(l, 2); AZ&“k d@df
Point* heap pt = new Point(l, 2); ,Vhw+ déuﬂ'
)< Point* heap pt arr err = new Point] //O\gFWH' tongTracted 6‘:@16\5 2

-

'n_\'

19

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

malloc vs. new

reiioc) | ner
a function an operator or keyword

arrays, structs, olfﬂ'ects, .

Allocated memory for anything L Sry'S ‘given
primitives , type
. ney T T&am3, T¥
Returns avold* appropriate pointer type
(should be cast) (doesn’t need a cast)
WA \\
When out of memory returns NUL L throws an exception -,;\o,e/o\

Deallocating free () deleteordelete[]

20

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Dynamically Allocated Class Members

class Foo has;

+» What will happen when we invoke baxr () ? ot ¥ foopr_;
= Vote at http://PollEv.com/justinh
" |fthereisanerror, [Foo::Foo(int val) { Init(val); })

how would you fix it? Foo::~Foo () { delete foo ptr ; }

vold Foo::Init(int wval) {

foo ptr = new int;
*foo ptr = val;
}

. rator=(const Foo& rhs) {
é \ "Fg-“’“ie‘%e r?zi%ptr ’ — aaeginj de,\{\b&
B. Bad delete Init (* (rhs.foo ptr)); merony.

}return *this; B B
C. Memory leak } Shock

/\/_,

D. “Works” fine void bar() { 4
Foo a(10) ; W
E. W r vee J Foo b (20);
e’re lost i @ O’
Con

y S) 21

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Heap Member Example

+» Let’s build a class to simulate some of the functionality of
the C++ string

" |nternal representation: c-st,r\ing to hold characters
L null-terminaed Char ¥

+» What might we want to implement in the class?

(nn

de ‘FGUH‘ C(\nﬁrw‘hr _ .b'l'r“ms y @
Cor\s‘\'ruc’\'bf ’F\ruw\ d\ar’k

Pr;r\“' +0 ()S‘"'(Q&W\
\Cvxs‘Hv\

Con co:“e V\oc\'?l) ~

> reminder: ths dog'\d Coovst "\'l\e Awll Fermingtor
2 well do ggpend tnstecd , Whih swilar

Copy ConsTructor

Ae»-f + Yu\(_"{b c -——) l

C\ECI\ *? \/_}‘QM\ Mmenn .

22

YA/ UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap

Str Class Walkthrough

CSE333, Winter 2020

Str.h

(e .
#include <iostream>
using namespace std;

class Str {

public:
Str () ; // default ctor
Str (const char* s); // c-string ctor
Str (const Str& s); // copy ctor
~Str () ; // dtor

int length() const; // return length of string
char* ¢ str() const; // return a copy of st_
volid append (const Stré& s);

private:
char* st ; // c-string on heap (terminated by
\}; // class Str

Str& operator=(const Str& s); // string assignment

friend std::ostreamé& operator<<(std::ostream& out, const Str& s);

"\0")

23

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Str::append

+~ Complete the append () member function:

" char* strncpy(char* dst, char* src, size t num);

" char* strncat(char* dst, char* src, size t num);

[#include <cstring>

#include "Str.h"

// append contents of s to the end of this string
void Str::append(const Str& s) |

see f}hf CcC

W UNIVERSITY of WASHINGTON L12: C++ Class Details, Heap CSE333, Winter 2020

Extra Exercise #1

« Write a C++ function that:

= Uses new to dynamically allocate an array of strings and uses
delete[] tofreeit

= Uses new to dynamically allocate an array of pointers to strings

- Assign each entry of the array to a string allocated using new

= Cleans up before exiting
- Use delete to delete each allocated string
- Uses delete[] to delete the string pointer array

- (whew!)

25

