YA/ UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity

CSE333, Winter 2020

C++ Constructor Insanity

CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:

Andrew Hu Austin Chan
Cheng Ni Cosmo Wang
Guramrit Singh Mengqi Chen
Rehaan Bhimani Renshu Gu

Zachary Keyes

Brennan Stein
Diya Joy

Pat Kosakanchit
Travis McGaha

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

Administrivia

+ Exercise 10 released today, due Monday

= Write a substantive class in C++!

+» Homework 2 due next Thursday (2/6)

" File system crawler, indexer, and search engine

"= Note: 1ibhwl . a (yours or ours) and the . h files from hw1l need
to be in right directory (~yourgit/hwl/)

" Note: use Ctrl-D to exit searchshell, test on directory of small
self-made files

w UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

Class Definition (. h file)

Point.h

(#ifndef POINT H_ N

#define POINT H

class Point {

public:
Point (int x, int y); // constructor
int get x() const { return x ; } // inline member function
int get y() const { return y ; } // inline member function
double Distance(const Point& p) const; // member function
void SetLocation (int x, int vy); // member function

private:
int x ; // data member
int y ; // data member
}; // class Point

#endif // POINT H
\. J

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

Class Member Definitions (. cc file)

Point.cc
(#include <cmaths h
#include "Point.h"
Point::Point (const int x, const int y) {
X = X;
this->y =1vy; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const
// We can access p’s x and y variables either through the
// get x(), get y() accessor functions or the x , y private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x_ - p.get x()) * (x - p.get x());
distance += (y - p.y) * (y - p.v);
return sqgrt (distance) ;

}

void Point::SetLocation(const int x, const int y) {
X = X;

Y_ = Yi

U

YA/ UNIVERSITY of WASHINGTON

L11: C++ Constructor Insanity

CSE333, Winter 2020

Class Usage (.

cc file)

usepoint.cc

(#include <lostream>
#include <cstdlib>
Hinclude "Point.h"

using namespace std;

Point pl (1, 2);
Point p2 (4, 6);

cout << "pl is: ("
cout << pl.get y ()

cout << "p2 is: ("
cout << p2.get y ()

cout << "dist : "

int main(int argc, char** argv) {
// allocate a new Point on the Stack
// allocate a new Point on the Stack

<< pl.get x() << "

<< ")" << endl;
<< p2.get x() << "
<< ")" << endl;

<< pl.Distance (p2)

return EXIT SUCCESS;

n.
l4 14

n .
4 14

<< endl;

w

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

]

‘zlﬁj
-
m

—
~o--

structvs.class

%+ InC, a struct can only contain data fields

®" No methods and all fields are always accessible

% In C++, struct and class are (nearly) the same!

= Both can have methods and member visibility
(public/private/protected)

= Minor difference: members are default publicin a struct and
default private ina class

+» Common style convention:
" Use struct for simple bundles of data
" Use class for abstractions with data + functions

YA/ UNIVERSITY of WASHINGTON

Lecture Outline

Constructors

L)

>

‘0

Copy Constructors

’0

Assignment

‘0

)

Destructors

L11: C++ Constructor Insanity

CSE333, Winter 2020

YA/ UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity

CSE333, Winter 2020

Constructors

+» A constructor (ctor) initializes a newly-instantiated object

= A class can have multiple constructors that differ in parameters
- Which one is invoked depends on how the object is instantiated

« Written with the class name as the method name:
Point (const int x, const int vy);

= C++ will automatically create a synthesized default constructor if
you have no user-defined constructors

- Takes no arguments and calls the default ctor on all non-“plain old
data” (non-POD) member variables

- Synthesized default ctor will fail if you have non-initialized const or
reference data members

Synthesized Default Constructor

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

(class SimplePoint {

public:
// no constructors declared!
int get x() const { return X ; } // inline member function
int get y () const { return Vay } // inline member function
double Distance(const SimplePoint& p) const;
void SetLocation(int x, int vy);

private:
int x ; // data member
int y ; // data member

.

}; // class SimplePoint SimpIePoint.h)

// definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint x; // invokes synthesized default constructor

return EXIT SUCCESS;

}

\

r#inclucﬁle "SimplePoint.h" SimplePoint,cc

~

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

Synthesized Default Constructor

+ If you define any constructors, C++ assumes you have
defined all the ones you intend to be available and will
not add any others

(#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint: :SimplePoint (const int x, const int y) {

X = X;
Y_ =Y
}
void foo () {
SimplePoint Xx; // compiler error: 1f you define any
// ctors, C++ will NOT synthesize a
// default constructor for you.
SimplePoint y (1, 2); // works: 1invokes the 2-int-arguments

// constructor

U

10

YA/ UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity

Multiple Constructors (overloading)

CSE333, Winter 2020

r#include "SimplePoint.h" A
// default constructor
SimplePoint: :SimplePoint () {
X = 0y
y_ = 0;
// constructor with two arguments
SimplePoint: :SimplePoint (const int x, const int y) {
X = X;
Y =Yi
void foo () {
SimplePoint x; // invokes the default constructor
SimplePoint y (1, 2); // invokes the 2-int-arguments ctor
SimplePoint al[3]; // invokes the default ctor 3 times
J)

11

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

Initialization Lists

+» C++ lets you optionally declare an initialization list as part
of a constructor definition
" |nitializes fields according to parameters in the list
" The following two are (nearly) identical:

[Point::Point (const int x, const int v) |)
X = X;
Y_ =Yi
std::cout << "Point constructed: (" << x << ",";
std::cout << y << ")" << std::endl;

U)

r// constructor with an initialization 1ist

Point::Point (const int x, const int y) : x (x), v (y) {
std::cout << "Point constructed: (" << x << ",";
std::cout << y << ")" << std::endl;

U

12

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

[] [] [J [J L4 S-F'Y:LE
Initialization vs. Construction I
\[4
[class Point3D { e e : b
ST @ First, initialization list is applied.
// constructor with 3 int arguments k\\\\‘
Poiniﬂiiconst int x, const int y, const int ZK:Zzg_(y), X (x)
} \ Next, constructor body is executed.
private:
int x , v, z ; // data members
\}; // class Point3D)

= Data members in initializer list are initialized in the order they are
defined in the class, not by the initialization list ordering (!)

- Data members that don’t appear in the initialization list are default
initialized/constructed before body is executed

" |nitialization preferred to assignment to avoid extra steps
- Real code should never mix the two styles

13

CSE333, Winter 2020

YA/ UNIVERSITY of WASHINGTON

Lecture Outline

L)

>

Constructors

‘0

Copy Constructors

’0

Assignment

‘0

)

Destructors

L11: C++ Constructor Insanity

14

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

]

fhﬁé
-
m

—
~o--

Copy Constructors

% C++ has the notion of a copy constructor (cctor)

= Used to create a new object as a copy of an existing object

[Point::Point (const int x, const int y) : x (x), v (y) { }

// copy constructor
Point::Point (const Point& copyme)
X = copyme.xX_;

Y = copyme.y ;

)

void foo () {
Point x(1, 2); // invokes the 2-int-arguments comnstructor
Point y(X) ; // 1invokes the copy constructor

// could also be written as "Point y = x;"

" |nitializer lists can also be used in copy constructors (preferred)

15

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

Synthesized Copy Constructor

+ If you don’t define your own copy constructor, C++ will
synthesize one for you

= |t will do a shallow copy of all of the fields (i.e. member variables)
of your class

= Sometimes the right thing; sometimes the wrong thing

[#include "SimplePoint.h"
. // definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint Xx;
SimplePoint y(x); // invokes synthesized copy constructor

return EXIT SUCCESS;

)

16

YA/ UNIVERSITY of WASHINGTON

L11: C++ Constructor Insanity

When Do Copies Happen?

+» The copy constructor is invoked if:

" You initialize an object from
another object of the same

type:

" You pass a non-reference
object as a value parameter
to a function:

" You return a non-reference

object value from a function:

CSE333, Winter 2020

Point x;
Point vy (x)

Point z = y;

// default ctor

// copy ctor
// copy ctor

(void foo (Point x) { ... } 1
Point vy; // default ctor
foo (y) ; // copy ctor

\)

[Point foo() { N

Point vy; // default ctor

J

return y;

// copy ctor

17

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

Compiler Optimization

%+ The compiler sometimes uses a “return by value
optimization” or “move semantics” to eliminate
unnecessary copies

= Sometimes you might not see a constructor get invoked when you
might expect it

(Point foo() { b
Point vy; // default ctor
return y; // copy ctor? optimized?
}
Point x (1, 2); // two-ints-argument ctor
Point y = x; // copy ctor
Point z = foo(); // copy ctor? optimized?
\. J

18

YA/ UNIVERSITY of WASHINGTON

Lecture Outline

Constructors

L)

>

‘0

Copy Constructors

’0

Assignment

‘0

)

Destructors

L11: C++ Constructor Insanity

CSE333, Winter 2020

19

YA/ UNIVERSITY of WASHINGTON

L11: C++ Constructor Insanity

Assignment != Construction

“="is the assignment operator

= Assigns values to an existing, already constructed object

(Point W ;
Point x(1,
Point vy (x)
Point z

default ctor
two-ints-argument ctor
copy ctor

copy ctor

assignment operator

CSE333, Winter 2020

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

]

fhﬁé
-
m

—
~o--

Overloading the “=" Operator

% You can choose to define the “=" operator

" But there are some rules you should follow:

Point& Point::operator=(const Point& rhs) {
if (this != &rhs) { // (1) always check against this
X = rhs.x ;
y = rhs.y ;
}
return *this; // (2) always return *this from op=
}
Point a; // default constructor
a =>b = ¢c; // works because = return *this
a = (b =c¢); // equiv. to above (= is right-associative)
(a = b) = c; // "works" because = returns a non-const

21

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

Synthesized Assighment Operator

+ If you don’t define the assighment operator, C++ will
synthesize one for you

= |t will do a shallow copy of all of the fields (i.e. member variables)
of your class

= Sometimes the right thing; sometimes the wrong thing

[#include "SimplePoint.h"
. // definitions for Distance () and SetLocation ()

int main(int argc, char** argv) {
SimplePoint Xx;
SimplePoint y(x);
Yy = X; // invokes synthesized assignment operator
return EXIT SUCCESS;

22

YA/ UNIVERSITY of WASHINGTON

Lecture Outline

L)

>

Constructors

‘0

Copy Constructors

’0

Assignment

‘0

)

Destructors

L11: C++ Constructor Insanity

CSE333, Winter 2020

23

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

Destructors

2 C++ has the notion of a destructor (dtor)

" |nvoked automatically when a class instance is deleted, goes out
of scope, etc. (even via exceptions or other causes!)

= Place to put your cleanup code — free any dynamic storage or
other resources owned by the object

= Standard C++ idiom for managing dynamic resources

- Slogan: “Resource Acquisition Is Initialization” (RAIl)

([1
Point::~Point () { // destructor
// do any cleanup needed when a Point object goes away
// (nothing to do here since we have no dynamic resources)

}

. J

24

YA/ UNIVERSITY of WASHINGTON

L11: C++ Constructor Insanity

Polling Question

CSE333, Winter 2020

+~ How many times does the destructor get invoked?
= Assume Point with everything defined (ctor, cctor, =, dtor)

= Assume no compiler optimizations

test.cc

— . ;
Point PrintRad (Point& pt) {
Point origin(0, 0);

N

double r = origin.Distance(pt) ;
double theta = atan2(pt.get y (), pt.get x());
cout << "r = " << r << endl;
cout << "theta = " << theta << " rad" << endl;
l\ return pt;
}
B. 2 int main(int argc, char** argv) {
C. 3 Point pt (3, 4);
. PrintRad (pt) ;
D 4 return O0O;
J)
’
E. We're lost...

25

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

Extra Exercise #1

+» Modify your Point3D class from Lec 10 Extra #1

"= Disable the copy constructor and assighnment operator

= Attempt to use copy & assignment in code and see what error the
compiler generates

= Write a CopyFrom () member function and try using it instead
- (See details about CopyFrom () in next lecture)

26

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Winter 2020

Extra Exercise #2

+ Write a C++ class that:

Is given the name of a file as a constructor argument

Has a GetNextWord () method that returns the next
whitespace- or newline-separated word from the file as a copy of
a string object, or an empty string once you hit EOF

Has a destructor that cleans up anything that needs cleaning up

27

