W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

C++ References, Const, Classes
CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:

Andrew Hu Austin Chan Brennan Stein
Cheng Ni Cosmo Wang Diya Joy
Guramrit Singh Mengqi Chen Pat Kosakanchit
Rehaan Bhimani Renshu Gu Travis McGaha

Zachary Keyes

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Administrivia

+» Exercise 9 released today, due Friday

= Write a substantive class in C++ (but no dynamic allocation — yet)
" First submitted Makefile!

+» Homework 2 due next Thursday (2/6)

" File system crawler, indexer, and search engine

= Note: 1ibhwl.a (yours or ours) and the . h files from hwl need
to be in right directory (~yourgit/hwl/)

= Note: use Ctrl-D to exit searchshell, test on directory of small
self-made files

w UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Lecture Outline

+ C++ References

&« constin C++

» C++ Classes Intro

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Note: Arrow points

POinterS Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) {
int x = 5, y = 10; x 5
) int* z = &X;

*z += 1;
x += 1; - 10
z = &yy
#7 = g
return EXIT SUCCESS; Z

L J
pointer.cc

YA/ UNIVERSITY of WASHINGTON

Pointers Reminder

L10: References, Const, Classes

CSE333, Winter 2020

Note: Arrow points
to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv)
int x = 5, y = 10;
int* z = &x;

W= g
X += 1;

z = &y;
SRz RN

return EXIT_SUCCESS;

{

f? X 5

J

pointer.cc

10

o

Z 0x7f&f...a4

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Note: Arrow points

POinterS Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) { h
int x = 5, y = 10; % 6
int* z = &x; f?
*z += 1; // sets x to 6

— X += 1; v T
*7z += 1; \
return EXIT SUCCESS; Z 07 FOf..a4
}
\ y

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Note: Arrow points

POinterS Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) { h
int x = 5, y = 10; X 7
int* z = &x; MFD

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 v 10

— oz = &V; \\¥
SRz RN <\\

4 Ox7ﬂ5fma4

return EXIT_SUCCESS;

L J
pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Note: Arrow points

POinterS Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) {
int x = 5, y = 10; x 7
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 v 10

z = &y; // sets z to the address of y
— <7 += 1;

Z Ox7ﬁ&fma0

return EXIT_SUCCESS;

}

L J
pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Note: Arrow points

POinterS Reminder to next instruction.

+~ A pointer is a variable containing an address

" Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main(int argc, char** argv) { R
int x = 5, y = 10; x 7
int* z = &x;
*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 v 11
z = &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11 ~ \\
=P rcturn EXIT SUCCESS; z | 0x780¢..a0
}
- Y,

pointer.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Note: Arrow points

REfe rences to next instruction.

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) {
int x = 5, y = 10; x 5

7z = 13
x += 1; y 10
z =Y
z += 1;

return EXIT_SUCCESS;

}

_)
reference.cc

10

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Note: Arrow points

REfe rences to next instruction.

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { R
int x = 5, y = 10; X, Z 5
int& z = x; // binds the name "z" to x
qz += l;
x += 1; y 10
= Y
= 1y
return EXIT SUCCESS;
}
. y,

reference.cc
11

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Note: Arrow points

REfe rences to next instruction.

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { R
int x = 5, y = 10; X, Z 6
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
I L y 10
= Y
= 1y
return EXIT SUCCESS;
}
. y,

reference.cc
12

YA/ UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE333, Winter 2020

Note: Arrow points

REfe rences to next instruction.

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { R
int x = 5, y = 10; X, Z 7
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 y 10

—) 7 = V;
z += 1;

return EXIT_SUCCESS;

)
reference.cc

13

YA/ UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE333, Winter 2020

Note: Arrow points

REfe rences to next instruction.

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { R
int x = 5, y = 10; X, Z 10
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 v 10
z =1vy; // sets z (and x) to the value of y

—p 7 += 1;
return EXIT SUCCESS;
}
- y

reference.cc
14

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Note: Arrow points

REfe rences to next instruction.

«» A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable
- Mutating a reference is mutating the aliased variable

" |ntroduced in C++ as part of the language

(int main(int argc, char** argv) { R
int x = 5, y = 10; X, Z 11
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 v 10

=vy; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11
= rcturn EXIT SUCCESS;
}
- y

reference.cc
15

YA/ UNIVERSITY of WASHINGTON

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

"= Client passes in an argument with normal syntax

L10: References, Const, Classes

CSE333, Winter 2020

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (int& x, int& y) | h
int tmp = Xx;
X =y
y = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = 10;
=t sSwWap(a, b);
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS;
\} J

(main) a 5

(main) b 10

passbyreference.cc

16

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Note: Arrow points

Pass-By-Reference to next instruction.

+» C++ allows you to use real pass-by-reference

"= Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void swap (int& x, int& y) { h
=) int tmp = X; .
% = W (main) a 5
v = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) ¥
swap (a, Db);
cout << "a: " << a << "; b: " << b << endl; (swap) tmp
return EXIT SUCCESS;
}

J
passbyreference.cc 17

CSE333, Winter 2020

YA/ UNIVERSITY of WASHINGTON

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

"= Client passes in an argument with normal syntax

L10: References, Const, Classes

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (int& x, int& y) { b
int tmp = Xx;
— X = Y
y = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = 10;
swap (a, Db);
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS;
\} J

(main) a 5
(swap) x
(main) b 10
(swap) ¥

(swap) tmp 5

passbyreference.cc

18

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Note: Arrow points

Pass-By-Reference to next instruction.

+» C++ allows you to use real pass-by-reference

"= Client passes in an argument with normal syntax
- Function uses reference parameters with normal syntax
- Modifying a reference parameter modifies the caller’s argument!

(void swap (int& x, int& y) { b
int tmp = Xx; .
% = W (main) a 10
— 7 = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, Db);
cout << "a: " << a << "; b: " << b << endl; (swap) tmp 5
return EXIT SUCCESS;
\} J

passbyreference.cc 19

CSE333, Winter 2020

YA/ UNIVERSITY of WASHINGTON

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

"= Client passes in an argument with normal syntax

L10: References, Const, Classes

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (int& x, int& y) { b
int tmp = Xx;
X =y
y = tmp;

#
int main(int argc, char** argv) {

int a = 5, b = 10;
swap (a, Db);
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS;

\} J

(main) a 10
(swap) x
(main) b 5
(swap) ¥

(swap) tmp 5

passbyreference.cc

20

YA/ UNIVERSITY of WASHINGTON

Pass-By-Reference

+» C++ allows you to use real pass-by-reference

"= Client passes in an argument with normal syntax

L10: References, Const, Classes

CSE333, Winter 2020

Note: Arrow points
to next instruction.

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(void swap (ints x, int& y) | R
int tmp = Xx;
X = y;
y = tmp;
}
int main(int argc, char** argv) {
int a = 5, b = 10;
swap (a, Db);
=y COUL << "a: " <K g << "; b: " KK b << endl;
return EXIT SUCCESS;
\} J

(main) a 10

(main) b 5

passbyreference.cc

21

w UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Lecture Outline

» C++ References
«+ constin C++

» C++ Classes Intro

22

w UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

const

+» const: this cannot be changed/mutated

=" Used much more in C++ thanin C

= Signal of intent to compiler; meaningless at hardware level
- Results in compile-time errors

(void BrokenPrintSquare (const inté& i) { b

i = i*i; // compiler error here!
std::cout << 1 << std::endl;
}

int main(int argc, char** argv) {
int J = 2;
BrokenPrintSquare (j) ;
return EXIT SUCCESS;

}

L J

brokenpassbyrefconst.cc

23

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

const and Pointers

+» Pointers can change data in two different contexts:

1) You can change the value of the pointer

2) You can change the thing the pointer points to
(via dereference)

4

» const can be used to prevent either/both of these

behaviors!

" const nextto pointer name means you can’t change the value of
the pointer

" const next to data type pointed to means you can’t use this
pointer to change the thing being pointed to

= Tip: read variable declaration from right-to-left

24

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

const and Pointers

% The syntax with pointers is confusing:

(int main (int argc, char** argv) {

int x = 5; // 1int

const int y = 6; // (const 1int)
y++;

const int *z = &y; // polnter to a (const int)
Rz RN
Z++;

int *const w = &Xx; // (const pointer) to a (variable int)
*wo+= 1;
wWt+;

const int *const v = &x; // (const pointer) to a (const int)
S LE
Vt+;

return EXIT SUCCESS;

k} J

constmadness.cc

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

const and Pointers

% The syntax with pointers is confusing:

rint main (int argc, char** argv) { h
int x = 5; // int
const int y = 6; // (const 1int)
y++; // compiler error
const int *z = &y; // polnter to a (const int)
*z += 1; // compiler error
Z++; // ok
int *const w = &Xx; // (const pointer) to a (variable int)
*wo+= 1; // ok
wW++; // compiler error
const int *const v = &x; // (const pointer) to a (const int)
*v o += 1; // compiler error
V++; // compiler error
return EXIT SUCCESS;
k} J

constmadness.cc 5

YA/ UNIVERSITY of WASHINGTON L10: References, Const, Classes

const Parameters

» A const parameter
cannot be mutated inside
the function

=" Therefore it does not
matter if the argument can
be mutated or not

» A non-const parameter
may be mutated inside
the function

" |t would be BAD if you
passed it a const variable

CSE333, Winter 2020

rvoid foo(const int* y) {
std::cout << *y << std::endl;

}

void bar (int* y) {
std::cout << *y << std::endl;
}

int main(int argc, char** argv) {
const int a = 10;
int b = 20;

foo (&a) ; // OK
foo (&b) ; // OK
bar (&a) ; // not OK — error
bar (&b) ; // OK

return EXIT_SUCCESS;

27

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Polling Question

+» What will happen when we try to compile and run?
= Vote at http://PollEv.com/justinh ooll.cc

(, , N
void foo(int* const x,

inté& y, int z)

A. *x +=1;
B. Output “(2, 4, 3)" y T

C. Compiler error }

about arguments

int main(int argc, char** argv) {

const int a = 1;
to foo (in main) int b = 2, ¢ = 3;
D. Compiler error foo(sa, b, c);
about body of foo | *iiseut << "1 s a << v e
E. We're lost... return EXIT SUCCESS;

}

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

]

e
-
m

When to Use References?

‘v ’n

+ A stylistic choice, not mandated by the C++ language
+» Google C++ style guide suggests:

" |nput parameters:
- Either use values (for primitive types like int or small

structs/objects)
- Or use const references (for complex struct/object instances)

" Qutput parameters:
- Use const pointers
— Unchangeable pointers referencing changeable data

" QOrdering:
- List input parameters first, then output parameters last

vold CalcArea (const 1nt& width, const int& height,
int* const area) {
*area = width * height;

) styleguide.cc

29

w UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Lecture Outline

» C++ References

&« constin C++

«+ C++ Classes Intro

30

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Classes

+ Class definition syntax (in a . h file):

4)
class Name {

public:
// public member definitions & declarations go here

private:
// private member definitions & declarations go here

}; // class Name
. J

= Members can be functions (methods) or data (variables)

+» Class member function definition syntax (in a . cc file):

retType Name: :MethodName (typel paraml, .., typeN paramN) {
// body statements

}

" (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

31

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Class Organization

% It’s a little more complex than in C when modularizing
with struct definition:
= (Class definition is part of interface and should go in . h file
- Private members still must be included in definition (!)

= Usually put member function definitions into companion . cc file
with implementation details
- Common exception: setter and getter methods

" These files can also include non-member functions that use the
class

+» Unlike Java, you can name files anything you want
" Typically Name.cc and Name.hforclass Name

32

YA/ UNIVERSITY of WASHINGTON

L10: References, Const, Classes

Class Definition (. h file)

CSE333, Winter 2020

SF¥%E

]

T

Point.h

(#ifndef POINT H
#define POINT H

class Point {
public:

voild SetLocation (const int x,

private:
int x ; // data member
int y ; // data member
}; // class Point

#fendif // POINT H
. i

Point (const int x, const int y)
int get x() const { return x ;
int get y() const { return y ;
double Distance (const Pointé& p) const;

; //
} //
} //

const int

constructor
inline member
inline member
// member
v);: // member

function
function
function
function

~\

P

/

33

W UNIVERSITY of WASHINGTON L10: References, Const, Classes CSE333, Winter 2020

Class Member Definitions (. cc file)

Point.cc
(#include <cmath> A
#include "Point.h"
Point::Point (const int x, const int y) {
X = X;
this->y = vy; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {
// We can access p’s x and y variables either through the
// get x(), get y() accessor functions or the x , y private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x_ - p.get x()) * (x - p.get x());
distance += (y - p.y) * (y - p.Y)’
return sqrt(distance);

}

void Point::SetLocation (const int x, const int y) {
X = X;

Y T Ys

k} J

34

YA/ UNIVERSITY of WASHINGTON L10: References, Const, Classes

Class Usage (. cc file)

CSE333, Winter 2020

usepoint.cc

r#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
Point pl(l, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

cout << "pl A& o (" <L pl.get_x() << n’ "
cout << pl.get y () << ")" << endl;

cout << "p2 is: (" << p2.get x() << ", ";
cout << p2.get_y() << ") " <KL endl;

cout << "dist : " << pl.Distance (p2) << endl;

return 0;

~\

35

YA/ UNIVERSITY of WASHINGTON L10: References, Const, Classes

Reading Assighment

+~ Before next time, read the sections in C++ Primer covering

class constructors, copy constructors, assignment
(operator=), and destructors

" |gnore “move semantics” for now

®" The table of contents and index are your friends...

CSE333, Winter 2020

36

YA/ UNIVERSITY of WASHINGTON L10: References, Const, Classes

CSE333, Winter 2020

Extra Exercise #1

% Worite a C++ program that:
" Has a class representing a 3-dimensional point
"= Has the following methods:

- Return the inner product of two 3D points
- Return the distance between two 3D points
- Accessors and mutators for the x, v, and z coordinates

37

YA/ UNIVERSITY of WASHINGTON

L10: References, Const, Classes

CSE333, Winter 2020

Extra Exercise #2

% Worite a C++ program that:

" Has a class representing a 3-dimensional box

- Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

- Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

"= Has the following methods:

« Test if one box is inside another box
« Return the volume of a box

- Handles <<, =, and a copy constructor
- Uses const in all the right places

38

