YA/ UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls

CSE333, Winter 2020

POSIX I/0, System Calls

CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:

Andrew Hu Austin Chan
Cheng Ni Cosmo Wang
Guramrit Singh Mengqi Chen
Rehaan Bhimar Renshu Gu

Zachary Keyes

Brennan Stein
Diya Joy

Pat Kosakanchit
Travis McGaha

W UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

Administrivia

+» Exercise 7 posted tomorrow, due Monday (1/27)
= Comment your code, check linter and valgrind

+» Homework 1 due tomorrow night (1/23)

4

Watch that HashTable doesn’t violate the modularity of
LinkedList

Watch for pointer to local (stack) variables

Use a debugger (e.g. gdb) if you're getting segfaults

Clean up “to do” comments, but leave “STEP #” markers
Late days: don’ttag hwl-final until you are really ready

Homework 2 will be released on Friday (1/24)

w UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

Lecture Outline

+» POSIX Lower-Level 1/O
+» System Calls

W UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

Remember This Picture?

A brief

. . C application C++ application Java application
diversion... PP

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

W UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

We Need To Go Deeper...

WE NEED TO GO\
" DEEPER

+» So far we’ve seen the C standard library to access files
" Use a provided FILE* stream abstraction

" fopen(), fread (), fwrite (), £fclose (), £seek ()

+» These are convenient and portable
" They are buffered*
" They are implemented using lower-level OS calls

W UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

From C to POSIX

+» Most UNIX-en support a common set of lower-level file
access APls: POSIX — Portable Operating System Interface
" open(), read(),write(),close (), 1seek ()
- Similar in spirit to their £* () counterparts from the C std lib
- Lower-level and unbuffered compared to their counterparts
- Also less convenient

" You will have to use these to read file system directories and for
network I/O, so we might as well learn them now

YA/ UNIVERSITY of WASHINGTON

LO7: POSIX I/0O, Syscalls

open () /close ()

+» To open a file:

® Passin the filename and access mode

- Similar to fopen ()

" Get back a “file descriptor”
- Similarto FILE* from fopen (), butisjustan int
- Defaults: Ois stdin, 1is stdout, 2 is stderr

(#include

#include
int fd
1f (fd

}

<fcntl.h> // for open ()

<unistd.h> // for close()

= open ("foo.txt",
== -1) {

perror ("open failed"):;
exit (EXIT FAILURE) ;

close (fd) ;

O RDONLY) ;

CSE333, Winter 2020

W UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

Reading from a File

&[Ssize_t read (int fd, void* buf, size t count);}

= Returns the number of bytes read
- Might be fewer bytes than you requested (!!!)
- Returns O if you’re already at the end-of-file
- Returns -1 on error (and sets errno)

" There are some surprising error modes (check errno)
- ERADEF: bad file descriptor
- EFAULT: output bufferis not a valid address
-« NINTR: read was interrupted, please try again (ARGH!!!! @)

- And many others...

YA/ UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls

CSE333, Winter 2020

One way to read () n bytes

+» Which is the correct completion of the blank below?

= \/ote at http://PollEv.com/justinh

[char* buf = ...; /J/ buffer of size n
int bytes left = n;
int result; // result of read()

while (bytes left > 0) {

result = read(fd, , bytes left);
1f (result == -1) {
if (errno != EINTR) {

// a real error happened,
// so return an error result
}
// EINTR happened,
// so do nothing and try again
continue;
}
bytes left -= result;
}

A.

B. buf + bytes_left

C. buf + bytes left-n
D. buf+ n - bytes_left

E. We're lost...

W UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

One method to read () n bytes

(int fd = open(filename, O RDONLY) ; A
char* buf = ...; // buffer of appropriate size
int bytes left = n;
int result;
while (bytes left > 0) {
result = read(fd, buf + (n - bytes left), bytes left);
1f (result == -1) {
1f (errno != EINTR) {
// a real error happened, so return an error result
}
// EINTR happened, so do nothing and try again
continue;
} else 1if (result == 0) {
// EOF reached, so stop reading
break;
}
bytes left -= result;
}
\close(fd); y

hdgQ It 4,

w UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

Other Low-Level Functions

+» Read man pages to learn about:
" write () —write data
« #include <unistd.h>
= fsync () —flush data to the underlying device

e #include <unistd.h>

" opendir (), readdir (), closedir () —deal with directory
listings

- Make sure you read the section 3 version (e.g. man 3 opendir)
« #include <dirent.h>

+ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

11

W UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

C Standard Library vs. POSIX

» Cstd lib implements a subset of POSIX
= e.g. POSIX provides directory manipulation that C std lib doesn’t

» Cstd lib implements automatic buffering
» Cstd lib has a nicer API

% The two are similar but C std lib builds on top of POSIX

® Choice between high-level and low-level
= Will depend on the requirements of your application

12

w UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

Lecture Outline

+» POSIX Lower-Level I/O
+» System Calls

13

YA/ UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls

CSE333, Winter 2020

What’s an 0OS?

«» Software that:

" Directly interacts with the hardware
- OS is trusted to do so; user-level programs are not

« OS must be ported to new hardware; user-level programs are
portable

"= Manages (allocates, schedules, protects) hardware resources

- Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

= Abstracts away messy hardware devices

- Provides high-level, convenient, portable abstractions
(e.q. files, disk blocks)

14

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

OS: Abstraction Provider

+» The OS is the “layer below”

= A module that your program can call (with system calls)
" Provides a powerful OS APl — POSIX, Windows, etc.

File System
e open(), read(), write(), close(), ...

Network Stack
* connect(), listen(), read(), write(), ...

Virtual Memory
* brk(), shm_open(), ...

|
|
£ |
Q
+ |
(V)]
> |
9
D
|
|
|

Process Management
* fork(), wait(), nice(), ...

process mgmt.

-z
o
O
o+
(0]
=z
-
S
)
Q
C

virtual memory
... etc ...

15

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

OS: Protection System

+ OS isolates process from each other

= But permits controlled sharing between them
- Through shared name spaces (e.g. file names)

+» OS isolates itself from processes

= Must prevent processes from accessing the
hardware directly

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

« OSis allowed to access the hardware

= User-level processes run with the CPU ON

(processor) in unprivileged mode (trusted)
®= The OS runs with the CPU in privileged mode

= User-level processes invoke system calls to
safely enter the OS HW (trusted)

16

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

System Call Trace (high-level view)

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

A CPU (thread of
execution) is running user-
level code in Process A;

the CPU is set to 0S
unprivileged mode. (trusted)

17

A

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

System Call Trace (high-level view)

Code in Process A invokes
a system call; the

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

hardware then sets the S
CPU to privileged mode ‘cqni
and traps into the OS,) OS
which invokes the (trusted)

appropriate system call
handler.

18

YA/ UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls

CSE333, Winter 2020

System Call Trace (high-level view)

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged
instructions that interact
directly with hardware
devices like disks.

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

ON
(trusted)

VANERVANERV A WRVA
HW (trusted)

19

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

System Call Trace (high-level view)

Once the OS has finished
servicing the system call,
which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

system call return

ON
(trusted)

(2) Returns out of the system
call back to the user-level code

in Process A.
HW (trusted)

20

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

System Call Trace (high-level view)

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

The process continues
executing whatever
code is next after the
system call invocation. 0S

(trusted)

Useful reference: HW (trusted)
CSPP ' 8.1-8.3

(the 351 book)

A

21

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

“Library calls” on x86/Linux

+» A more accurate picture:
" Consider a typical Linux process

" |ts thread of execution can be in one | Cstandard
of several places: | ey

- In your program’s code éﬁﬁglibc

- Inglibc, ashared library containing
the C standard library, POSIX,
support, and more

« In the Linux architecture-independent
code

- |n Linux x86-64 code

architecture-dependent code

Linux kernel

22

YA/ UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls

CSE333, Winter 2020

“Library calls” on x86/Linux: Option 1

+~ Some routines your program
invokes may be entirely handled

by glibc without involving the | Cstandard

ke rn el | library
I

" e.g.strcmp () from stdio.h glibc
" There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading) architecture-independent code

- But after symbols are resolved,
invoking gl ibc routines is basically

as fast as a function call within your architecture-dependent code
program itself!

Linux kernel

23

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls

CSE333, Winter 2020

“Library calls” on x86/Linux: Option 2

% Some routines may be handled
by glibc, but they in turn
invoke Linux system calls

= e.g. POSIX wrappers around Linux
syscalls

- POSIX readdir () invokes the
underlying Linux readdir ()

= e.g. C stdio functions that read
and write from files
« fopen (), fclose (), fprintf ()

invoke underlying Linux open (),
close (), write (), etc.

| Cstandord ummm——
| library > POSIX

architecture-dependent code

Linux kernel

24

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

“Library calls” on x86/Linux: Option 3

% Your program can choose to
directly invoke Linux system calls

as well | Cstandard
L : : : lib
= Nothing is forcing you to link with oy

glibc and use it

= But relying on directly-invoked Linux

system calls may make your
program less portable across UNIX

varieties

architecture-dependent code

Linux kernel

25

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

+ Let’s walk through how a Linux

Details on x86/Linux

system call actually works

= We'll assume 32-bit x86 using the | Cstandard
modern SYSENTER / SYSEXIT x86 | library
instructions » I glibc
- x86-64 code is similar, though details m

always change over time, so take this
as an example — not a debugging
guide architecture-independent code

architecture-dependent code

Linux kernel

26

YA/ UNIVERSITY of WASHINGTON LO7: POSIX I/0, Syscalls CSE333, Winter 2020

System Calls on x86/Linux

OXFFFFFFFF

Your program
Remember our
process address

space picture? C standard
library

"= |et’s add some

details: glibc

architecture-independent code

architecture-dependent code

Linux kernel

CPU

0x00000000

YA/ UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls

System Calls on x86/Linux

OXFFFFFFFF

Process is executing your
program code

0P

0x00000000

CSE333, Winter 2020

Your program

C standard
library

glibc

architecture-independent code

architecture-dependent code

Linux kernel

unpriv CPU

YA/ UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls

CSE333, Winter 2020

System Calls on x86/Linux

OXFFFFFFFF

Your program
Process calls into a

glibc function

" e.g. fopen /()

= We'll ignore the C*Cfg”dard %
messy details of forary

loading/linking glibc
shared libraries

architecture-independent code

architecture-dependent code

Linux kernel

unpriv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

System Calls on x86/Linux

OXFFFFFFFF
IR

Your program
glibc begins the
process of invoking a
Linux system call

" glibc’s C standard %
fopen () likely elielny
invokes Linux’s glibc
open () system

call

" Puts the system call #
and arguments into
registers

= Usesthe call x86

instruction to call into
the routine architecture-dependent code

___kernel vsyscall
located in 1inux-

gate.so unpriv CPU
0x00000000

architecture-independent code

Linux kernel

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

System Calls on x86/Linux

OXFFFFFFFF Your program
IR
linux—-gate.soisa
vdso
= Avirtual Cs?andard %
. . library

dynamically-linked SP)

shared glibc

object

" s a kernel-provided
shared library that is
plunked into a process’

architecture-independent code
address space

® Provides the intricate

machine code needed to
trigger a system call architecture-dependent code

Linux kernel

unpriv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

System Calls on x86/Linux

OXFFFFFFFF Your program

linux-gate.so

eventually invokes
the SYSENTER x86

instruction

" SYSENTER is x86’s “fast
system call” instruction

C standard
library

glibc

Causes the CPU to raise
its privilege level

Traps into the Linux
kernel by changing the
SP, IP to a previously-
determined location

architecture-independent code

Changes some
segmentation-related

registers (see CSE451) %archltecture—dependent code

Linux kernel

priv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

System Calls on x86/Linux

OXFFFFFFFF

Your program

The kernel begins
executing code at
the SYSENTER

entry point C standard
library

0P

" |sin the architecture-
dependent part of Linux g|IbC

" Jt's job is to:
Look up the system call

number in a system call %
dispatch table

Call into the address
stored in that table entry;
this is Linux’s system call
handler

architecture-independent code

architecture-dependent code
— For open (), the

handler is named
sys_open, and is

system call #5 CPU
0x00000000

Linux kernel

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

System Calls on x86/Linux

OXFFFFFFFF

Your program
The system call
handler executes

= What it does is
system-call specific

SP
0P

C standard

" |t may take a long time to library

execute, especially if it
has to interact with

glibc

hardware
Linux may choose to %
context switch the CPU
to a different runnable architecture-independent code
process

architecture-dependent code

Linux kernel

priv CPU

0x00000000

YA/ UNIVERSITY of WASHINGTON LO7: POSIX I/0, Syscalls CSE333, Winter 2020

System Calls on x86/Linux

OXFFFFFFFF

Your program

Eventually, the
system call handler
finishes

= Returns back to the
system call entry point
Places the system call’s

return value in the
appropriate register

Calls SYSEXTIT to return
to the user-level code

0P

C standard
library

glibc

architecture-independent code

%architecture—dependent code

Linux kernel

priv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO7: POSIX I/O, Syscalls CSE333, Winter 2020

System Calls on x86/Linux

OXFFFFFFFF

Your program
SYSEXIT transitions the
processor back to user-
mode code

= Restores the C s%‘andard %
IP, SP to library
user-land values P glibc
= Sets the CPU
back to

IR

unprivileged mode

" Changes some
segmentation-related
registers (see CSE451)

= Returns the processor
backto glibc architecture-dependent code

architecture-independent code

Linux kernel

unpriv CPU

0x00000000

CSE333, Winter 2020

YA/ UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls

System Calls on x86/Linux

OXFFFFFFFF

Your program

glibc continues to

execute
= Might execute more

system calls C standard
= Eventually Sp library

glibc

returns back to
your program code

architecture-independent code

architecture-dependent code

Linux kernel

IR
unpriv CPU

0x00000000

—__
W UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

strace

+ A useful Linux utility that shows the sequence of system
calls that a process makes:

bash$ strace 1ls 2>§&1 | less

execve ("/usr/bin/1ls", ["1s"], [/* 41 vars */]) =

brk (NULL) = 0x15aa000

mmap (NULL, 4096, PROT_READIPROT_WRITE, MAP_PRIVATEIMAP_ANONYMOUS, -1,
0x7£03bb741000

access ("/etc/ld.so.preload", R OK) = -1 ENOENT (No such file or directory)

open ("/etc/ld.so.cache", O RDONLY|O CLOEXEC) = 3

fstat (3, {st mode=S IFREG|0644, st size=126570, ...}) =0

mmap (NULL, 126570, PROT READ, MAP PRIVATE, 3, 0) = 0x7£03bb722000

close (3) =0

open ("/1lib64/libselinux.so.1", O RDONLY|O CLOEXEC) = 3

read (3, "\177ELF\2\1\I\0\0\NONO\NONONONONON3\NO>\0\NI\NO\NONON3003J\0\NONONONONO" ...,
832) = 832

fstat (3, {st mode=S IFREG|0755, st size=155744, ...}) =0

mmap (NULL, 2255216, PROT_READIPROT_EXEC, MAP PRIVATE |MAP DENYWRITE, 3,
0x7£03bb2£a000

mprotect (0x7£03bb31e000, 2093056, PROT NONE) =

mmap (0x7£03bb51d000, 8192, PROT_READIPROT_WRITE,
MAP_PRIVATEIMAP_FIXED\MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000

etc

W UNIVERSITY of WASHINGTON LO7: POSIX 1/0, Syscalls CSE333, Winter 2020

If You’re Curious

Download the Linux kernel source code

L)

>

" Available from http://www.kernel.org/

)

0‘0

man, section 2: Linux system calls
" man 2 1intro

" man 2 syscalls

o

man, section 3: glibc/libec library functions

L)

" man 3 1intro

+» The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

>

39

