
CSE333, Winter 2020L06:  Linking, File I/O

Linking, File I/O
CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:
Andrew Hu Austin Chan Brennan Stein
Cheng Ni Cosmo Wang Diya Joy
Guramrit Singh Mengqi Chen Pat Kosakanchit
Rehaan Bhimar Renshu Gu Travis McGaha
Zachary Keyes



CSE333, Winter 2020L06:  Linking, File I/O

Administrivia
 Exercise 5 posted yesterday, due Wednesday
 Exercise 6 posted today, also due Wednesday

 Homework 1 due next Thursday (1/23)
 Watch that HashTable doesn’t violate the modularity of 
LinkedList

 Watch for pointer to local (stack) variables
 Draw memory diagrams!
 Use a debugger (e.g. gdb) and valgrind
 Please leave “STEP #” markers for graders!
 Late days:  don’t tag hw1-final until you are really ready
 Extra Credit:  if you add unit tests, put them in a new file and 

adjust the Makefile
2



CSE333, Winter 2020L06:  Linking, File I/O

Lecture Outline
 Visibility of Symbols
 extern, static

 File I/O with the C standard library
 C Stream Buffering

3



CSE333, Winter 2020L06:  Linking, File I/O

Namespace Problem
 If we define a global variable named “counter” in one C 

file, is it visible in a different C file in the same program?

 Yes, if you use external linkage
• The name “counter” refers to the same variable in both files
• The variable is defined in one file and declared in the other(s)
• When the program is linked, the symbol resolves to one location

 No, if you use internal linkage
• The name “counter” refers to a different variable in each file
• The variable must be defined in each file
• When the program is linked, the symbols resolve to two locations

4



CSE333, Winter 2020L06:  Linking, File I/O

External Linkage
 extern makes a declaration of something externally-

visible
 Works slightly differently for variables and functions…

5

#include <stdio.h>

// A global variable, defined and
// initialized here in foo.c.
// It has external linkage by
// default.
int counter = 1;

int main(int argc, char** argv) {
printf("%d\n", counter);
bar();
printf("%d\n", counter);
return 0;

}

foo.c

#include <stdio.h>

// "counter" is defined and 
// initialized in foo.c.
// Here, we declare it, and
// specify external linkage
// by using the extern specifier.
extern int counter;

void bar() {
counter++;
printf("(b): counter = %d\n",

counter);
}

bar.c



CSE333, Winter 2020L06:  Linking, File I/O

Internal Linkage
 static (in the global context) restricts a definition to 

visibility within that file

6

#include <stdio.h>

// A global variable, defined and
// initialized here in foo.c.
// We force internal linkage by
// using the static specifier.
static int counter = 1;

int main(int argc, char** argv) {
printf("%d\n", counter);
bar();
printf("%d\n", counter);
return 0;

}

foo.c

#include <stdio.h>

// A global variable, defined and
// initialized here in bar.c.
// We force internal linkage by
// using the static specifier.
static int counter = 100;

void bar() {
counter++;
printf("(b): counter = %d\n",

counter);
}

bar.c



CSE333, Winter 2020L06:  Linking, File I/O

Function Visibility

7

#include <stdio.h>

extern int bar(int x); // "extern" is default, usually omit

int main(int argc, char** argv) {
printf("%d\n", bar(5));
return 0;

}main.c

// By using the static specifier, we are indicating
// that foo() should have internal linkage.  Other
// .c files cannot see or invoke foo().
static int foo(int x) {

return x*3 + 1;
}

// Bar is "extern" by default.  Thus, other .c files
// could declare our bar() and invoke it.
int bar(int x) {

return 2*foo(x);
}bar.c



CSE333, Winter 2020L06:  Linking, File I/O

Linkage Issues
 Every global (variables and functions) is extern by 

default
 Unless you add the static specifier, if some other module uses 

the same name, you’ll end up with a collision!
• Best case: compiler (or linker) error
• Worst case: stomp all over each other

 It’s good practice to:
 Use static to “defend” your globals

• Hide your private stuff!
 Place external declarations in a module’s header file 

• Header is the public specification

8

STYLE
TIP



CSE333, Winter 2020L06:  Linking, File I/O

Static Confusion…
 C has a different use for the word “static”:  to create a 

persistent local variable
 The storage for that variable is allocated when the program loads, 

in either the .data or .bss segment
 Retains its value across multiple function invocations

9

void foo() {
static int count = 1;
printf("foo has been called %d times\n", count++);

}

void bar() {
int count = 1;
printf("bar has been called %d times\n", count++);

}

int main(int argc, char** argv) {
foo(); foo(); bar(); bar(); return 0;

}static_extent.c



CSE333, Winter 2020L06:  Linking, File I/O

Additional C Topics
 Teach yourself!
 man pages are your friend!
 String library functions in the C standard library 

• #include <string.h>

– strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), …
• #include <stdlib.h> or #include <stdio.h>

– atoi(), atof(), sprint(), sscanf()

 How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

 unions and what they are good for
 enums and what they are good for
 Pre- and post-increment/decrement
 Harder:  the meaning of the “volatile” storage class

10



CSE333, Winter 2020L06:  Linking, File I/O

Lecture Outline
 Visibility of Symbols
 extern, static

 File I/O with the C standard library
 C Stream Buffering

11

This is essential material for the next part of the project (hw2)!



CSE333, Winter 2020L06:  Linking, File I/O

File I/O
 We’ll start by using C’s standard library
 These functions are part of glibc on Linux
 They are implemented using Linux system calls (POSIX)

 C’s stdio defines the notion of a stream
 A sequence of characters that flows to and from a device

• Can be either text or binary; Linux does not distinguish
 Is buffered by default; libc reads ahead of your program
 Three streams provided by default: stdin, stdout, stderr

• You can open additional streams to read and write to files
 C streams are manipulated with a FILE* pointer, which is 

defined in stdio.h

12



CSE333, Winter 2020L06:  Linking, File I/O

C Stream Functions (1 of 2)
 Some stream functions (complete list in stdio.h):

 FILE* fopen(filename, mode);

• Opens a stream to the specified file in specified file access mode

 int fclose(stream);

• Closes the specified stream (and file)

 int fprintf(stream, format, ...);

• Writes a formatted C string
– printf(...); is equivalent to fprintf(stdout, ...);

 int fscanf(stream, format, ...);

• Reads data and stores data matching the format string

13

FILE* fopen(filename, mode);

int fclose(stream);

int fprintf(stream, format, ...);

int fscanf(stream, format, ...);



CSE333, Winter 2020L06:  Linking, File I/O

C Stream Functions (2 of 2)
 Some stream functions (complete list in stdio.h):

 FILE* fopen(filename, mode);

• Opens a stream to the specified file in specified file access mode

 int fclose(stream);

• Closes the specified stream (and file)

 int fprintf(stream, format, ...);

• Writes an array of count elements of size bytes from ptr to stream

 int fscanf(stream, format, ...);

• Reads an array of count elements of size bytes from stream to ptr

14

FILE* fopen(filename, mode);

int fclose(stream);

size_t fwrite(ptr, size, count, stream);

size_t fread(ptr, size, count, stream);



CSE333, Winter 2020L06:  Linking, File I/O

C Stream Error Checking/Handling
 Some error functions (complete list in stdio.h):

 void perror(message);

• Prints message followed by an error message related to errno to 
stderr

 int ferror(stream);

• Checks if the error indicator associated with the specified stream is 
set

 void clearerr(stream);

• Resets error and EOF indicators for the specified stream

15

int ferror(stream);

int clearerr(stream);

void perror(message);



CSE333, Winter 2020L06:  Linking, File I/O

C Streams Example

16

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char** argv) {
FILE *fin, *fout;
char readbuf[READBUFSIZE];
size_t readlen;

if (argc != 3) {
fprintf(stderr, "usage: ./cp_example infile outfile\n");
return EXIT_FAILURE;       // defined in stdlib.h

}

// Open the input file
fin = fopen(argv[1], "rb");  // "rb" -> read, binary mode
if (fin == NULL) {

perror("fopen for read failed");
return EXIT_FAILURE;

}

...

cp_example.c



CSE333, Winter 2020L06:  Linking, File I/O

C Streams Example

17

int main(int argc, char** argv) {

...   // previous slide’s code

// Open the output file
fout = fopen(argv[2], "wb");  // "wb" -> write, binary mode
if (fout == NULL) {

perror("fopen for write failed");
fclose(fin);
return EXIT_FAILURE;

}

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {

if (fwrite(readbuf, 1, readlen, fout) < readlen) {
perror("fwrite failed");
fclose(fin);
fclose(fout);
return EXIT_FAILURE;

}
}
...   // next slide’s code

}

cp_example.c



CSE333, Winter 2020L06:  Linking, File I/O

C Streams Example

18

int main(int argc, char** argv) {

...   // two slides ago’s code

...   // previous slide’s code

// Test to see if we encountered an error while reading
if (ferror(fin)) {

perror("fread failed");
fclose(fin);
fclose(fout);
return EXIT_FAILURE;

}

fclose(fin);
fclose(fout);

return EXIT_SUCCESS;
}

cp_example.c



CSE333, Winter 2020L06:  Linking, File I/O

Lecture Outline
 Visibility of Symbols
 extern, static

 File I/O with the C standard library
 C Stream Buffering

19



CSE333, Winter 2020L06:  Linking, File I/O

Buffering
 By default, stdio uses buffering for streams:

 Data written by fwrite() is copied into a buffer allocated by 
stdio inside your process’ address space

 As some point, the buffer will be “drained” into the destination:
• When you explicitly call fflush() on the stream
• When the buffer size is exceeded (often 1024 or 4096 bytes)
• For stdout to console, when a newline is written (“line buffered”) or 

when some other function tries to read from the console
• When you call fclose() on the stream
• When your process exits gracefully (exit() or return from 
main())

20



CSE333, Winter 2020L06:  Linking, File I/O

Why Buffer?
 Performance – avoid disk accesses
 Group many small writes 

into a single larger write 

 Disk Latency = 😱😱😱
(Jeff Dean from LADIS ’09)

 Convenience – nicer API
 We’ll compare C’s fread() with POSIX’s read()

21



CSE333, Winter 2020L06:  Linking, File I/O

Why NOT Buffer?
 Reliability – the buffer needs to be flushed
 Loss of computer power = loss of data
 “Completion” of a write (i.e. return from fwrite()) does not 

mean the data has actually been written
• What if you signal another process to read the file you just wrote to?

 Performance – buffering takes time
 Copying data into the stdio buffer consumes CPU cycles and 

memory bandwidth
 Can potentially slow down high-performance applications, like a 

web server or database (“zero-copy”)

 When is buffering faster?  Slower?
22



CSE333, Winter 2020L06:  Linking, File I/O

Disabling C’s Buffering
 Explicitly turn off with setbuf(stream, NULL)

 Use POSIX APIs instead of C’s
 No buffering is done at the user level
 We’ll see these soon

 But… what about the layers below?
 The OS caches disk reads and writes in the file system buffer

cache
 Disk controllers have caches too!

23



CSE333, Winter 2020L06:  Linking, File I/O

Extra Exercise #1
 Modify the linked list code from Lecture 4 Extra 

Exercise #3
 Add static declarations to any internal functions you implemented 

in linkedlist.h
 Add a header guard to the header file

24



CSE333, Winter 2020L06:  Linking, File I/O

Extra Exercise #2
 Write a program that:
 Uses argc/argv to receive the name of a text file
 Reads the contents of the file a line at a time
 Parses each line, converting text into a uint32_t
 Builds an array of the parsed uint32_t’s
 Sorts the array
 Prints the sorted array to stdout

 Hint: use man to read about 
getline, sscanf, realloc, 
and qsort

25

bash$ cat in.txt
1213
3231
000005
52
bash$ ./extra1 in.txt
5
52
1213
3231
bash$



CSE333, Winter 2020L06:  Linking, File I/O

Extra Exercise #3
 Write a program that:
 Loops forever; in each loop:

• Prompt the user to 
input a filename

• Reads a filename
from stdin

• Opens and reads 
the file

• Prints its contents 
to stdout in the format shown:

 Hints:
 Use man to read about fgets
 Or, if you’re more courageous, try man 3 readline to learn about 

libreadline.a and Google to learn how to link to it

26

00000000 50 4b 03 04 14 00 00 00 00 00 9c 45 26 3c f1 d5
00000010 68 95 25 1b 00 00 25 1b 00 00 0d 00 00 00 43 53
00000020 45 6c 6f 67 6f 2d 31 2e 70 6e 67 89 50 4e 47 0d
00000030 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 91 00
00000040 00 00 91 08 06 00 00 00 c3 d8 5a 23 00 00 00 09
00000050 70 48 59 73 00 00 0b 13 00 00 0b 13 01 00 9a 9c
00000060 18 00 00 0a 4f 69 43 43 50 50 68 6f 74 6f 73 68
00000070 6f 70 20 49 43 43 20 70 72 6f 66 69 6c 65 00 00
00000080 78 da 9d 53 67 54 53 e9 16 3d f7 de f4 42 4b 88
00000090 80 94 4b 6f 52 15 08 20 52 42 8b 80 14 91 26 2a
000000a0 21 09 10 4a 88 21 a1 d9 15 51 c1 11 45 45 04 1b
... etc ...


