W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

Linking, File I/O
CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:

Andrew Hu Austin Chan Brennan Stein
Cheng Ni Cosmo Wang Diya Joy
Guramrit Singh Mengqi Chen Pat Kosakanchit
Rehaan Bhimar Renshu Gu Travis McGaha

Zachary Keyes

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

Administrivia

\/
0’0

\/
0‘0

D)

L)

Exercise 5 posted yesterday, due Wednesday
Exercise 6 posted today, also due Wednesday

Homework 1 due next Thursday (1/23)

= Watch that HashTable doesn’t violate the modularity of
LinkedList

= Watch for pointer to local (stack) variables

" Draw memory diagrams!

= Use a debugger (e.g. gdb) and valgrind

" Please leave “STEP #” markers for graders!

" |late days: don’t tag hwl-final until you are really ready

= Extra Credit: if you add unit tests, put them in a new file and
adjust the Makefile

w UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

Lecture Outline

% Visibility of Symbols

" extern, static

« File 1/O with the C standard library
+» C Stream Buffering

YA/ UNIVERSITY of WASHINGTON

LO6: Linking, File I/O

CSE333, Winter 2020

Namespace Problem

+» If we define a global variable named “counter” in one C
file, is it visible in a different C file in the same program?

" Yes, if you use external linkage

« The name “counter” refers to the same variable in both files
- The variable is defined in one file and declared in the other(s)

- When the program is linked, the symbol resolves to one location

= No, if you use internal linkage

« The name “counter” refers to a different variable in each file
- The variable must be defined in each file

- When the program is linked, the symbols resolve to two locations

YA/ UNIVERSITY of WASHINGTON LO6: Linking, File 1/O

External Linkage

CSE333, Winter 2020

+» extern makes a declaration of something externally-

visible

" Works slightly differently for variables and functions...

(#include <stdio.h>

// A global variable, defined and
// initialized here in foo.c.

// It has external linkage by

// default.

int counter = 1;

int main(int argc, char** argv) ({

~\

printf ("%$d\n", counter) ;
bar () ;
printf ("$d\n", counter) ;
return O;
U y
foo.c

(#include <stdio.h> A
// "counter" is defined and
// initialized in foo.c.
// Here, we declare it, and
// specify external linkage
// by using the extern specifier.
extern int counter;
void bar () {
counter++;
printf (" (b) : counter = %d\n",
counter) ;
U y

bar.c

5

YA/ UNIVERSITY of WASHINGTON

Internal Linkage

LO6: Linking, File I/O

CSE333, Winter 2020

+» static (in the global context) restricts a definition to

visibility within that file

(#include <stdio.h>

// A global variable, defined and
// initialized here in foo.c.

// We force internal linkage by
// using the static specifier.
static int counter = 1;

int main(int argc, char** argv) {

(#include <stdio.h> R

// A global variable, defined and
// initialized here in bar.c.

// We force internal linkage by
// using the static specifier.

printf ("%$d\n", counter) ;
bar () ;
printf ("%$d\n", counter) ;
return O;
¢ Y

foo.c

static int counter = 100;
void bar () {
counter++;
printf (" (b) : counter = %d\n",
counter) ;
~ J

bar.c

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

Function Visibility

(// By using the static specifier, we are indicating h
// that foo() should have internal linkage. Other
// .c files cannot see or invoke foo().
static int foo(int x) {
return x*3 + 1;
}
// Bar is "extern" by default. Thus, other .c files
// could declare our bar() and invoke 1it.
int bar(int x)
return 2*foo (x) ;
bar.c | })
~

r#include <stdio.h>
extern int bar(int x); // "extern" is default, usually omit
int main(int argc, char** argv) {

printf ("$d\n", bar(5)) ;
return O0O;

main.c{ }

~\L

YA/ UNIVERSITY of WASHINGTON LO6: Linking, File 1/O

CSE333, Winter 2020

Ej

Linkage Issues ;

‘v ’n

+~ Every global (variables and functions) is extern by
default

" Unless you add the static specifier, if some other module uses
the same name, you’ll end up with a collision!

- Best case: compiler (or linker) error
- Worst case: stomp all over each other

+ It’s good practice to:
" Use static to “defend” your globals
- Hide your private stuff!

= Place external declarations in a module’s header file
- Header is the public specification

static_extent.c

YA/ UNIVERSITY of WASHINGTON

Static Confusion...

" Retains its value across multiple function invocations

LO6: Linking, File I/O

CSE333, Winter 2020

+» Chas a different use for the word “static”: tocreate a
persistent local variable

" The storage for that variable is allocated when the program loads,
in either the .data or .bss segment

<

(void foo() {
static int count
printf ("foo has been called %d times\n",

}

void bar ()
int count

printf ("bar has been called %d times\n",

}

int main(int argc,
foo () ;

count++) ;

count++) ;

char** argv)

foo () ; bar () ;

bar () ; return O;

~

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

Additional C Topics

+» Teach yourself!
" man pages are your friend!

= String library functions in the C standard library
« #include <string.h>
— strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), ...
« #include <stdlib.h>or#include <stdio.h>
— atoi(), atof(), sprint(), sscanf()

" How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

= unions and what they are good for

= enums and what they are good for

" Pre- and post-increment/decrement

®" Harder: the meaning of the “volatile” storage class

10

w UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

Lecture Outline

+ Visibility of Symbols

" extern, static

+ File I/O with the C standard library
+» C Stream Buffering

[This is essential material for the next part of the project (hw2)!]

11

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

File 1/O

+» We'll start by using C’s standard library
= These functions are part of glibc on Linux

" They are implemented using Linux system calls (POSIX)

R

+» C's stdio defines the notion of a stream

= A sequence of characters that flows to and from a device
- Can be either text or binary; Linux does not distinguish

" |s buffered by default; 1ibc reads ahead of your program

" Three streams provided by default: stdin, stdout, stderr
- You can open additional streams to read and write to files

= Cstreams are manipulated with a FILE* pointer, which is
defined in stdio.h

12

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

C Stream Functions (1 of 2)

%~ Some stream functions (complete list in stdio.h):

0 [FILE* fopen (filename, mode) ; }

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);}

 Closes the specified stream (and file)

-[int fprintf (stream, format, ...);}
- Writes a formatted C string
- printf (...); isequivalentto fprintf (stdout, ...);
-[int fscanf (stream, format, ...);}

- Reads data and stores data matching the format string

13

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

C Stream Functions (2 of 2)

%~ Some stream functions (complete list in stdio.h):

0 [FILE* fopen (filename, mode) ; }

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);}

 Closes the specified stream (and file)

-[size_t fwrite (ptr, size, count, stream);}

- Writes an array of count elements of size bytes from ptr to stream

-[size_t fread (ptr, size, count, stream) ; }

- Reads an array of count elements of size bytes from stream to ptr

14

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

C Stream Error Checking/Handling

+» Some error functions (complete list in stdio.h):

-[void perror(message);}

- Prints message followed by an error message related to errno to
stderr

-[int ferror(stream);}

- Checks if the error indicator associated with the specified stream is
set

= [int clearerr (stream) ; }

- Resets error and EOF indicators for the specified stream

15

YA/ UNIVERSITY of WASHINGTON

C Streams Example

LO6: Linking, File I/O

cp_example.c

r#include <stdio.h>

#include <stdlib.h>
#include <errno.h>
#tdefine READBUFSIZE 128

int main(int argc,
FILE *fin, *fout;
char readbuf [READBUFSIZE] ;
size t readlen;
if (argc != 3) {

fprintf (stderr, "usage:

return EXIT FAILURE;

}

// Open the input file
fin = fopen(argv[l], "xrb")
if (fin NULL) {

return EXIT FAILURE;

}

char** argv)

./cp_example infile outfile\n") ;
// defined in stdlib.h

; // "rb" -> read, binary mode

perror ("fopen for read failed");

\

CSE333, Winter 2020

16

YA/ UNIVERSITY of WASHINGTON LO6: Linking, File 1/O

C Streams Example

cp_example.c

CSE333, Winter 2020

(int main (int argc, char** argv)
// previous slide’s code

// Open the output file

if (fout == NULL) {
perror ("fopen for write failed");
fclose (fin) ;
return EXIT FAILURE;

}

// Read from the file, write to fout

1f (fwrite(readbuf, 1, readlen, fout) < readlen)
perror ("fwrite failed");
fclose (fin) ;
fclose (fout) ;
return EXIT FAILURE;

// next slide’s code

while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) >

{

fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode

0)

{

~

17

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

C Streams Example

cp_example.c

[int main(int argc, char** argv) |
// two slides ago’s code
// previous slide’s code

// Test to see if we encountered an error while reading
1f (ferror (fin)) {

perror ("fread failed");

fclose (fin) ;

fclose (fout) ;

return EXIT FAILURE;

}

fclose (fin) ;
fclose (fout) ;

return EXIT SUCCESS;

\

18

w UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

Lecture Outline

+ Visibility of Symbols

" extern, static

» File 1/0O with the C standard library
% C Stream Buffering

19

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

Buffering

+~ By default, stdio uses buffering for streams:

= Data written by fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= As some point, the buffer will be “drained” into the destination:
- When you explicitly call ££1ush () on the stream
- When the buffer size is exceeded (often 1024 or 4096 bytes)

- For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

« Whenyoucall fclose () onthe stream

- When your process exits gracefully (exit () or return from
main ())

20

w UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

Why Buffer?

+ Performance — avoid disk accesses

7 \
" Group many small writes aEE :
. P . Y . I input et EERL 1] ————> ovhput | Xeach
into a single larger write TUT betier) _ Stream
\ Wdividval)
N writes y
= Disk Latency = @ @ @ Numbers Everyone Should Know
(Jeff Dean from LADIS’09)| .
cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference i o
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ms
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
. . Send packet CA->Netherlands->CA 150,000,000 ns
+~ Convenience — nicer API

= We'll compare C's £fread () with POSIX’s read ()

21

Why NOT Buffer?

+ Reliability — the buffer needs to be flushed

" |Loss of computer power = |loss of data

= “Completion” of a write (i.e. return from £fwrite ()) does not
mean the data has actually been written

- What if you signal another process to read the file you just wrote to?

+» Performance — buffering takes time

" Copying data into the stdio buffer consumes CPU cycles and
memory bandwidth

" Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

+» When is buffering faster? Slower?

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

22

W UNIVERSITY of WASHINGTON LO6: Linking, File I/O CSE333, Winter 2020

Disabling C’s Buffering

» Explicitly turn off with setbuf (stream, NULL)

+ Use POSIX APIs instead of C’s

" No buffering is done at the user level
= We'll see these soon

» But... what about the layers below?

" The OS caches disk reads and writes in the file system buffer
cache

" Disk controllers have caches too!

23

YA/ UNIVERSITY of WASHINGTON LO6: Linking, File I/O

Extra Exercise #1

+» Modify the linked list code from Lecture 4 Extra
Exercise #3

= Add static declarations to any internal functions you implemented
inlinkedlist.h

= Add a header guard to the header file

CSE333, Winter 2020

24

W UNIVERSITY of WASHINGTON LO6: Linking, File 1/0 CSE333, Winter 2020

Extra Exercise #2

+» Write a program that:
= Uses argc/argv to receive the name of a text file
= Reads the contents of the file a line at a time
= Parses each line, converting textintoauint32 t
= Builds an array of the parsed uint32 t’s

o
Sorts the array bash$ cat in.txt

" Prints the sorted array to stdout 1213
3231
000005

. 52
+ Hint: use man to read about bashé . /extral in.txt

getline, sscanf, reallocg, 2
52

and gsort 1213

3231
bash$

25

W UNIVERSITY of WASHINGTON LO6: Linking, File 1/0 CSE333, Winter 2020

Extra Exercise #3

+» Write a program that:

= Loops forever; in each loop:
- Promptthe userto [BERERRERE

00000010

input a filename 00000020
00000030

- Reads a filename 00000040
: 00000050

from stdin 0000060
00000070

- Opens and reads 00000080
the ﬁ|e 00000090
000000a0

* Prints its contents co- o ete .
to stdout in the format shown:

+ Hints:
= Useman toread about fgets

= QOr, if you're more courageous, tryman 3 readline tolearn about
libreadline.a and Google to learn how to link to it

26

