
CSE333, Winter 2020L01: Intro, C Refresher

Intro, C Refresher
CSE 333 Winter 2020

Instructor: Justin Hsia

Teaching Assistants:
Andrew Hu Austin Chan Brennan Stein
Cheng Ni Cosmo Wang Diya Joy
Guramrit Singh Mengqi Chen Pat Kosakanchit
Rehaan Bhimar Renshu Gu Travis McGaha
Zachary Keyes

CSE333, Winter 2020L01: Intro, C Refresher

Lecture Outline
 Course Introduction
 Course Policies
 https://courses.cs.washington.edu/courses/cse333/20wi/syllabus/

 C Reintroduction

2

CSE333, Winter 2020L01: Intro, C Refresher

Introductions: Course Staff
 Your Instructor: just call me Justin
 From California (UC Berkeley and the Bay Area)
 I like: teaching, the outdoors, board games, and ultimate
 Excited to be teaching this course for the 3rd time!

 TAs:

 Available in section, office hours, and discussion group
 An invaluable source of information and help

 Get to know us
 We are here to help you succeed!

3

CSE333, Winter 2020L01: Intro, C Refresher

Introductions: Students
 ~190 students registered, split across two lectures
 Largest offering ever!
 There are no overload forms or waiting lists for CSE courses

• Majors must add using the UW system as space becomes available
• Non-majors should work with undergraduate advisors (in the Gates

Center) to handle enrollment details

 Expected background
 Prereq: CSE 351 – C, pointers, memory model, linker, system calls
 CSE 391 or Linux skills needed for CSE 351 assumed

4

CSE333, Winter 2020L01: Intro, C Refresher

Course Map: 100,000 foot view

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

5

CSE333, Winter 2020L01: Intro, C Refresher

Systems Programming
 The programming skills, engineering discipline, and

knowledge you need to build a system

 Programming: C / C++

 Discipline: testing, debugging, performance analysis

 Knowledge: long list of interesting topics
• Concurrency, OS interfaces and semantics, techniques for consistent

data management, distributed systems algorithms, …
• Most important: a deep(er) understanding of the “layer below”

6

CSE333, Winter 2020L01: Intro, C Refresher

Discipline?!?
 Cultivate good habits, encourage clean code
 Coding style conventions
 Unit testing, code coverage testing, regression testing
 Documentation (code comments, design docs)
 Code reviews

 Will take you a lifetime to learn, but oh-so-important,
especially for systems code
 Avoid write-once, read-never code
 Treat assignment submissions in this class as production code

• Comments must be updated, no commented-out code, no extra
(debugging) output

7

STYLE
TIP

CSE333, Winter 2020L01: Intro, C Refresher

Lecture Outline
 Course Introduction
 Course Policies
 https://courses.cs.washington.edu/courses/cse333/20wi/syllabus/
 Digest here, but you must read the full details online

 C Reintroduction

8

CSE333, Winter 2020L01: Intro, C Refresher

Communication
 Website: http://cs.uw.edu/333
 Schedule, policies, materials, assignments, etc.

 Discussion: http://piazza.com/washington/winter2020/cse333
 Announcements made here
 Ask and answer questions – staff will monitor and contribute

 Office Hours: spread throughout the week
 Can e-mail/private Piazza post to make individual appointments

 Anonymous feedback:
 Comments about anything related to the course where you would

feel better not attaching your name

9

CSE333, Winter 2020L01: Intro, C Refresher

Course Components
 Lectures (26) – fewer than normal
 Introduce the concepts; take notes!!!

 Sections (10)
 Applied concepts, important tools and skills for assignments,

clarification of lectures, exam review and preparation

 Programming Exercises (19)
 One for most lectures, due the morning before the next lecture
 We are checking for: correctness, memory issues, code style/quality

 Programming Projects (0+4)
 Warm-up, then 4 “homework” that build on each other

 Exams (2)
 Midterm: Friday, February 14, TBD [joint]
 Final: Wednesday, March 18, 12:30-2:20 [joint]

10

CSE333, Winter 2020L01: Intro, C Refresher

Grading
 Exercises: 20% total
 Submitted via GradeScope (account info mailed later today)
 Graded on correctness and style by TAs

 Projects: 40% total
 Submitted via GitLab; must tag commit that you want graded
 Binaries provided if you didn’t get previous part working

 Exams: Midterm (15%) and Final (20%)
 Several old exams on course website

 EPA: Effort, Participation, and Altruism (5%)

 More details on course website
 You must read the syllabus there – you are responsible for it

11

CSE333, Winter 2020L01: Intro, C Refresher

Deadlines and Student Conduct
 Late policies
 Exercises: no late submissions accepted, due 11 am
 Projects: 4 late day “tokens” for quarter, max 2 per homework
 Need to get things done on time – difficult to catch up!

 Academic Integrity (read the full policy on the web)
 I trust you implicitly and will follow up if that trust is violated
 In short: don’t attempt to gain credit for something you didn’t do

and don’t help others do so either
 This does not mean suffer in silence – learn from the course staff

and peers, talk, share ideas; but don’t share or copy work that is
supposed to be yours

12

CSE333, Winter 2020L01: Intro, C Refresher

Hooked on Gadgets
 Gadgets reduce focus and learning
 Bursts of info (e.g. emails, IMs, etc.) are addictive
 Heavy multitaskers have more trouble focusing and shutting out

irrelevant information
• http://www.npr.org/2016/04/17/474525392/attention-students-put-

your-laptops-away
 Seriously, you will learn more if you use paper instead!!!

 Non-disruptive use okay
 NO audio allowed (mute phones & computers)
 Stick to side and back seats
 Stop/move if asked by fellow student

13

CSE333, Winter 2020L01: Intro, C Refresher

Lecture Outline
 Course Introduction
 Course Policies
 https://courses.cs.washington.edu/courses/cse333/20wi/syllabus/

 C Reintroduction
 Workflow, Variables, Functions

14

CSE333, Winter 2020L01: Intro, C Refresher

C
 Created in 1972 by Dennis Ritchie
 Designed for creating system software
 Portable across machine architectures
 Most recently updated in 1999 (C99) and 2011 (C11)

 Characteristics
 “Low-level” language that allows us to exploit underlying features

of the architecture – but easy to fail spectacularly (!)
 Procedural (not object-oriented)
 “Weakly-typed” or “type-unsafe”
 Small, basic library compared to Java, C++, most others….

15

CSE333, Winter 2020L01: Intro, C Refresher

Generic C Program Layout
#include <system_files>
#include "local_files"

#define macro_name macro_expr

/* declare functions */
/* declare external variables & structs */

int main(int argc, char* argv[]) {
/* the innards */

}

/* define other functions */

STYLE
TIP

16

CSE333, Winter 2020L01: Intro, C Refresher

C Syntax: main
 To get command-line arguments in main, use:
 int main(int argc, char* argv[])

 What does this mean?
 argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument).
 argv is an array containing pointers to the arguments as strings

(more on pointers later)

 Example: $ foo hello 87
 argc = 3

 argv[0]="foo", argv[1]="hello", argv[2]="87"

int main(int argc, char* argv[])

17

CSE333, Winter 2020L01: Intro, C Refresher

C Workflow
Editor (emacs, vi) or IDE (eclipse)

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries
LINK

18

CSE333, Winter 2020L01: Intro, C Refresher

C to Machine Code

C source file
(sumstore.c)

Assembly file
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,
int* dest) {

*dest = x + y;
}

sumstore:
addl %edi, %esi
movl %esi, (%rdx)
ret

Machine code
(sumstore.o)

400575: 01 fe
89 32
c3

C compiler
(gcc –c)

19

CSE333, Winter 2020L01: Intro, C Refresher

When Things Go South…
 Errors and Exceptions
 C does not have exception handling (no try/catch)
 Errors are returned as integer error codes from functions

• Standard codes found in stdlib.h:
EXIT_SUCCESS (usually 0) and EXIT_FAILURE (non-zero)

• Return value from main is a status code
 Because of this, error handling is ugly and inelegant

 Crashes
 If you do something bad, you hope to get a “segmentation fault”

(believe it or not, this is the “good” option)

STYLE
TIP

20

CSE333, Winter 2020L01: Intro, C Refresher

Java vs. C (351 refresher)
 Are Java and C mostly similar (S) or significantly different

(D) in the following categories?
 List any differences you can recall (even if you put ‘S’)

Language Feature S/D Differences in C
Control structures

Primitive datatypes

Operators

Casting

Arrays

Memory management

21

CSE333, Winter 2020L01: Intro, C Refresher

Primitive Types in C
 Integer types
 char, int

 Floating point
 float, double

 Modifiers
 short [int]
 long [int, double]
 signed [char, int]
 unsigned [char, int]

C Data Type 32-bit 64-bit printf

char 1 1 %c

short int 2 2 %hd

unsigned short int 2 2 %hu

int 4 4 %d / %i
unsigned int 4 4 %u

long int 4 8 %ld

long long int 8 8 %lld

float 4 4 %f

double 8 8 %lf

long double 12 16 %Lf

pointer 4 8 %p

Typical sizes – see sizeofs.c

22

CSE333, Winter 2020L01: Intro, C Refresher

C99 Extended Integer Types
 Solves the conundrum of “how big is an long int?”

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {
int8_t a; // exactly 8 bits, signed
int16_t b; // exactly 16 bits, signed
int32_t c; // exactly 32 bits, signed
int64_t d; // exactly 64 bits, signed
uint8_t w; // exactly 8 bits, unsigned
...

}

STYLE
TIP

23

CSE333, Winter 2020L01: Intro, C Refresher

Function Definitions
 Generic format:

// sum of integers from 1 to max
int32_t sumTo(int32_t max) {
int32_t i, sum = 0;

for (i = 1; i <= max; i++) {
sum += i;

}

return sum;
}

returnType fname(type param1, …, type paramN) {
// statements

}

24

CSE333, Winter 2020L01: Intro, C Refresher

Function Ordering
 You shouldn’t call a function that hasn’t been declared yet

int main(int argc, char** argv) {
printf("sumTo(5) is: %d\n", sumTo(5));
return EXIT_SUCCESS;

}

// sum of integers from 1 to max
int32_t sumTo(int32_t max) {

int32_t i, sum = 0;

for (i = 1; i <= max; i++) {
sum += i;

}
return sum;

}

sum_badorder.c

Note: code examples from slides are posted on
the course website for you to experiment with!

25

CSE333, Winter 2020L01: Intro, C Refresher

Solution 1: Reverse Ordering
 Simple solution; however, imposes ordering restriction on

writing functions (who-calls-what?)

// sum of integers from 1 to max
int32_t sumTo(int32_t max) {

int32_t i, sum = 0;

for (i = 1; i <= max; i++) {
sum += i;

}
return sum;

}

int main(int argc, char** argv) {
printf("sumTo(5) is: %d\n", sumTo(5));
return EXIT_SUCCESS;

}

sum_betterorder.c

26

CSE333, Winter 2020L01: Intro, C Refresher

Solution 2: Function Declaration
 Teaches the compiler arguments and return types;

function definitions can then be in a logical order
 Function comment usually by the prototype

sum_declared.c // sum of integers from 1 to max
int32_t sumTo(int32_t); // func prototype

int main(int argc, char** argv) {
printf("sumTo(5) is: %d\n", sumTo(5));
return EXIT_SUCCESS;

}

int32_t sumTo(int32_t max) {
int32_t i, sum = 0;
for (i = 1; i <= max; i++) {

sum += i;
}
return sum;

}

STYLE
TIP

27

CSE333, Winter 2020L01: Intro, C Refresher

Function Declaration vs. Definition
 C/C++ make a careful distinction between these two

 Definition: the thing itself
 e.g. code for function, variable definition that creates storage
 Must be exactly one definition of each thing (no duplicates)

 Declaration: description of a thing
 e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include
• Should also #include declaration in the file with the actual

definition to check for consistency
 Needs to appear in all files that use that thing

• Should appear before first use
28

CSE333, Winter 2020L01: Intro, C Refresher

Multi-file C Programs
void sumstore(int x, int y, int* dest) {
*dest = x + y;

}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {
int z, x = 351, y = 333;
sumstore(x, y, &z);
printf("%d + %d = %d\n", x, y, z);
return 0;

}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:
$ gcc -o sumnum sumnum.c sumstore.c

29

CSE333, Winter 2020L01: Intro, C Refresher

Compiling Multi-file Programs
 The linker combines multiple object files plus statically-

linked libraries to produce an executable
 Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or
gcc

30

CSE333, Winter 2020L01: Intro, C Refresher

Polling Question
 Which of the following statements is FALSE?
 Vote at http://PollEv.com/justinh
A. With the standard main() syntax, It is always safe

to use argv[0].
B. We can’t use uint64_t on a 32-bit machine

because there isn’t a C integer primitive of that
length.

C. Using function declarations is beneficial to both
single- and multi-file C programs.

D. When compiling multi-file programs, not all linking is
done by the Linker.

E. We’re lost…
31

CSE333, Winter 2020L01: Intro, C Refresher

To-do List
 Make sure you’re registered on Canvas, Piazza,

Gradescope, and Poll Everywhere
 All user IDs should be your uw.edu email address

 Explore the website thoroughly: http://cs.uw.edu/333
 Computer setup: CSE lab, attu, or CSE Linux VM
 Exercise 0 is due 11 am on Wednesday
 Find exercise spec on website, submit via Gradescope

• Course “CSE 333” under “Winter 2020”, Assignment “ex0 - Exercise
0”, then drag-n-drop file(s)!

 Sample solution will be posted Wednesday afternoon
 Hint: look at documentation for stdlib.h, string.h, and
inttypes.h

32

