
CSE 333
Section 8
Boooooooooost & HTTP

1

Logistics
Friday:

Exercise 16 @ 10:30 am

Monday:
Exercise 17 @ 10:30 am

Thursday:
HW4 @ 11:59 pm

2

BOOOOOOOOST

3

BOOST
Boost is a free C++ library that provides support for various tasks in C++
● Note: Boost does NOT follow the Google style guide!!!

Boost adds many string algorithms that you may have seen in Java
● Include with #include <boost/algorithm/string.hpp>

We are showcasing a few we think could be useful for HW4, but more can be found here:
● https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html

4

https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html

trim
void boost::trim(string& input);
● Removes all leading and trailing whitespace from the string
● input is an input and output parameter (non-const reference)

string s(" HI ");
boost::algorithm::trim(s);

// results in s == "HI"

5

replace_all
void boost::replace_all(string& input, const string& search,

const string& format);

● Replaces all instances of search inside input with format

string s("ynrnrt");
boost::algorithm::replace_all(s, "nr", "e");

// results in s == "yeet"

6

replace_all
void boost::replace_all(string& input, const string& search,

const string& format);

● Replaces all instances of search inside input with format

string s("queue?");
boost::algorithm::replace_all(s, "que", "q");

replace_all() guarantees that
‘format’ will be in the final result
if-and-only-if ‘search’ existed.

replace_all() makes a single
pass over input.

// results in s == "que?"

7

split
void boost::split(vector<string>& output,

 const string& input,
 boost::PredicateT match_on,
 boost::token_compress_mode_type compress);

● Split the string by the characters in match_on

boost::PredicateT boost::is_any_of(const string& tokens);
● Returns predicate that matches on any of the characters in tokens

8

split Examples
vector<string> tokens;

string s("I-am--split");

boost::split(tokens, s, boost::is_any_of("-"),
 boost::token_compress_on);
// results in tokens == ["I", "am", "split"]

boost::split(tokens, s, boost::is_any_of("-"),
 boost::token_compress_off);
// results in tokens == ["I", "am", "", “split"]

9

Exercise 1

10

vector<string> RemoveDuplicates(const string& input){

}

 string copy(input);
 boost::algorithm::trim(copy);
 std::vector<string> components;
 boost::split(components, copy, boost::is_any_of(" \t\n"),

 boost::token_compress_on);
 std::vector<string> result;
 for (uint i = 0; i < components.size(); ++i) {
 bool unique = true;
 for (uint j = 0; j < i && unique; ++j) {
 unique &= !(components[i] == components[j]);
 }
 if (unique) {
 result.push_back(components[i]);
 }
 }
 return result;

11

HTTP Review

12

HTTP Review
1. What does HTTP stand for?

2. What layer does HTTP reside in?

HyperText Transfer Protocol

Application Layer

13

HTTP Request Format
[METHOD] [request-uri] HTTP/[version]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[request body, if any]

14

HTTP Methods
GET The GET method requests a representation of the specified resource. Requests using GET should only

retrieve data.

HEAD The HEAD method asks for a response identical to that of a GET request, but without the response body.

POST The POST method is used to submit an entity to the specified resource, often causing a change in state or
side effects on the server.

PUT The PUT method replaces all current representations of the target resource with the request payload.

DELETE The DELETE method deletes the specified resource.

CONNECT The CONNECT method establishes a tunnel to the server identified by the target resource.

OPTIONS The OPTIONS method is used to describe the communication options for the target resource.

TRACE The TRACE method performs a message loop-back test along the path to the target resource.

PATCH The PATCH method is used to apply partial modifications to a resource.
15

HTTP Response Format
HTTP/[version] [status code] [reason]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[response body, if any]

16

HTTP Response Status Codes
● HTTP/1.1 200 OK

○ The request succeeded and the requested object is sent

● HTTP/1.1 404 Not Found
○ The requested object was not found

● HTTP/1.1 301 Moved Permanently
○ The object exists, but its name has changed
○ The new URL is given as the “Location:” header value

● HTTP/1.1 500 Server Error
○ The server had some kind of unexpected error

17

Version

Status

Headers

Request body

18

 HTTP REQUEST
DEMO (telnet)

19

Using Telnet with HW4
1. Launch the server

./http333d <port> ../projdocs/ unit_test_indices/*

2. Connect with telnet

telnet <HostName> <port>

3. Write an HTTP request and send it

4. To exit telnet:
○ Ctrl+] then Ctrl+d

20

Writing an HTTP Request
● Example HTTP Request layout can be found in HttpRequest.h

● Example file request:
○ GET /static/test_tree/books/artofwar.txt HTTP/1.1

● Example query request:
○ GET /query?terms=books+of+war HTTP/1.1

● To send a request, hit [Enter] twice

● Compare the output of solution_binaries/http3d to ./http3d

21

Exercise 4

22

Exercise 4
map<string,string> ExtractRequestLine(const string& request) {
 vector<string> lines;
 boost::split(lines, request, boost::is_any_of("\r\n"),
 boost::token_compress_on);
 vector<string> components;
 string firstLine = lines[0];
 boost::split(components, firstLine, boost::is_any_of(" "),
 boost::token_compress_on);
 map<string, string> res;
 res["method"] = components[0];
 res["uri"] = components[1];
 res["version"] = components[2];
 return res;
} 23

Threads

24

“Computers are really dumb. They can only
do a few things like shuffling around

numbers, but they do them really really fast
so that they appear smart.”

-Hal Perkins
Threads are just a way of making computers appear to do multitasking,
regardless of whether they are running one or more CPUs

25

Threads
● Contained within a process.
● Multiple threads can exist within the same process.

○ Every process starts with one thread of execution, but it can spawn more.

● Threads in a single process share one address space

○ Instructions (code)

○ Static (global) data

○ Dynamic (heap) data

○ Environment variables, open files, sockets, etc.

● Easy communication (put something in shared memory)
● Synchronization often uses locks (like mutexes)

26

POSIX threads (pthreads)
● The POSIX standard provides APIs for creating and manipulating threads.
● Part of the standard C/C++ libraries, declared in pthread.h
● Core pthread functions:

○ pthread_create - “Go do this {function}”
○ pthread_exit - “I’m done with my task!”
○ pthread_join - “I’ll wait for you to report back your result”
○ pthread_cancel - “I changed my mind, you can stop now”
○ pthread_detach - “You’re free now, go forth and prosper”

27

pthread_create

o pthread_create creates a new thread and calls start_routine with arg as its parameter.
o pthread_create arguments:

o thread: Pointer to a unique identifier for the new thread. (output parameter)

o attr: An attribute object that may be used to set thread attributes. Use NULL for the
default values.

o start_routine: The C routine that the thread will execute once it is created.

o arg: A single argument that may be passed to start_routine. It must be passed by
reference as a pointer cast of type void. NULL may be used if no argument is to be
passed.

o Compile and link with –pthread. 28

#include <pthread.h>
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

Threads - Quick Check
 MyClass onTheStack;
 pthread_t child;
 pthread_create(&child, nullptr, foo, &onTheStack);

onTheStack is on the parent thread’s stack. However, each thread has its
own stack! Can we still access onTheStack from the child? Why or why
not?

Yes! All threads share an address space

29

Terminating Threads
● There are several ways in which a thread may be terminated:

○ The thread returns normally from its starting routine; Its work is done.

○ The thread makes a call to the pthread_exit subroutine - whether its
work is done or not.

○ The thread is canceled by another thread via the pthread_cancel routine.

○ The entire process is terminated due to making a call to either the exec()
or exit().

○ If main()finishes first, without calling pthread_exit explicitly itself.

30

pthread_exit

● Allows the user to terminate a thread and to specify an optional termination status
parameter, retval.

● In subroutines that execute to completion normally, you can often dispense with
calling pthread_exit().

● Calling pthread_exit() from main():

○ If main() finishes before the threads it spawned and does not
call pthread_exit() explicitly, all the threads it created will terminate.

○ To allow other threads to continue execution, the main thread should terminate by
calling pthread_exit() rather than exit().

Demo simple_pthreads.cc 31

void pthread_exit(void *retval);

Threads - Gotchas
● Resources (heap-allocated storage, file descriptors, etc)

○ Often shared between multiple threads
○ Must be allocated / deallocated exactly once
○ Don’t use deallocated resources from other threads

buf = new int[BUFSIZE];
...
if (!handleRequest(buf, req, len)) {

delete[] buf; // buf was allocated in this thread
close(fd); // is somebody else going to try to use fd???
pthread_exit(nullptr);

}
32

pthread_join

● Synchronization between threads.
● pthread_join blocks the calling thread until the specified thread terminates

and then the calling thread joins the terminated thread.
● Only threads that are created as joinable can be joined; a thread created as

detached can never be joined. (Refer pthread_create)
● The target thread's termination return status can be obtained if it was specified in

the target thread's call to pthread_exit().

Demo: pthreads.cc

33

int pthread_join(pthread_t thread, void **retval);

Locking - mutex
int pthread_mutex_init(pthread_mutex_t *mutex,

 const pthread_mutexattr_t *attr);

● Initializes the mutex lock pointed to by mutex with lock attributes specified by attr.

● Attr can be null.

int pthread_mutex_lock(pthread_mutex_t *mutex);
● Grabs the lock

int pthread_mutex_unlock(pthread_mutex_t *mutex);
● Releases the lock

int pthread_mutex_destroy(pthread_mutex_t *mutex);
● Destroys the lock 34

Threads – Locking
● Locking is hard.

○ Too much, and performance is worse than sequential
○ Too little, and threads clash - often unexpected results
○ Not careful, and deadlock freezes your program forever!
pthread_mutex_lock(&lock);
if (!do_computation(resource)) {

printf(“Error doing computation\n”);
return false; // !!!

}
pthread_mutex_unlock(&lock);
return true;

Demo total.cc & total_locking.cc
35

More examples of pthreads usage
● From sequential to concurrent merge sort

1. merge_sort.cc

2. c4_merge_sort.cc

3. concurrent_merge_sort.cc

36

