
CSE 333
Section 7
Casting & Client-Side Networking

1

Logistics
Tonight:

HW3 @ 11:59 pm

Monday:
Exercise 15 @ 10:30 am

2

Casting in C++
Four different casts that are more explicit:

1. static_cast<to_type>(expression)
2. dynamic_cast<to_type>(expression)
3. const_cast<to_type>(expression)
4. reinterpret_cast<to_type>(expression)

When programming in C++, you should use these casts!

3

Static Cast
static_cast<to_type>(expression)

Used to:
 1) Convert pointers of related types
 Base* b = static_cast<Base*>(new Derived);
 - compiler error if types aren't related

 2) Non-pointer conversion
 int qt = static_cast<int>(3.14);

4

Static Cast
static_cast<to_type>(expression)

[!] Be careful when casting up:
 Derived* d = static_cast<Derived*>(new Base);
 d->y = 5;
 - compiler will let you do this
 - dangerous if you want to do things defined in
 Derived, but not in Base!

5

Dynamic Cast
dynamic_cast<to_type>(expression)

Used to:
 1) Convert pointers of related types
 Base* b = dynamic_cast<Base*>(new Derived);
 - compiler error if types aren't related
 - at runtime, returns nullptr if it is actually an
 unsafe upwards cast:
 Derived* d = dynamic_cast<Derived*>(new Base);

6

Const Cast
const_cast<to_type>(expression)

Used to:
 1) Add or remove const-ness
 const int x = 5;
 const int *ro_ptr = &x
 int *ptr = const_cast<int*>(ro_ptr);

7

Reinterpret Cast
reinterpret_cast<to_type>(expression)

Used to:
 1) Cast between incompatible types
 int* ptr = 0xDEADBEEF;
 int64_t x = reinterpret_cast<int64_t>(ptr);
 - types must be of same size
 - refuses to do float-integer conversions

8

Exercise 1

9

10

reinterpret_cast<char *>

dynamic_cast<Derived *>

static_cast<Base *>

static_cast<int64_t>

Computer Networks: A 7-ish Layer Cake

11

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

12

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

LAN

13

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

14

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

UDP TCP Stream abstraction!

15

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

DNSHTTP

16

Data flow

Transmit
Data

Receive
Data

17

Exercise 2

18

Exercise 2

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

19

Exercise 2

● DNS:

● IP:

● TCP:

● UDP:

● HTTP:

Translating between IP addresses and host names. (Application Layer)

Routing packets across the Internet. (Network Layer)

Reliable, stream-based networking on top of IP. (Transport Layer)

 Unreliable, packet-based networking on top of IP. (Transport Layer)

Sending websites and data over the Internet. (Application Layer)

20

Vote in Zoom!

 = application layer = transport layer

 = network layer = link layer

TCP versus UDP

Transmission Control Protocol(TCP) User Datagram Protocol(UDP)

21

- Connection oriented Service
- Reliable and Ordered
- Flow control

- Connectionless service
- Unreliable packet delivery
- Faster
- No feedback

Sockets
- Just a file descriptor for network communication
- Types of Sockets

- Stream sockets (TCP)
- Datagram sockets (UDP)

- Each socket is associated with a port number and an IP address
- Both port and address are stored in network byte order (big endian)

22

Sockets

fam port addr zero

fam port flow addr scope

struct sockaddr_in (IPv4)

struct sockaddr_in6 (IPv6)

fam

struct sockaddr_storage

struct sockaddr (pointer to this struct is used as parameter type in system calls)

fam ????

16

28

Big enough to hold either

....

23

Byte Ordering and Endianness
- Network Byte Order (Big Endian)

- The most significant byte is stored in the highest address

- Host byte order
- Might be big or little endian, depending on the hardware

- To convert between orderings, we can use
- uint16_t htons (uint16_t hostlong);
- uint16_t ntohs (uint16_t hostlong);

- uint32_t htonl (uint32_t hostlong);
- uint32_t ntohl (uint32_t hostlong);

24

Exercise 3

25

1.

26

1. getaddrinfo()
- Performs a DNS Lookup for a hostname

int getaddrinfo(const char *hostname,
 const char *service,

 const struct addrinfo *hints,
 struct addrinfo **res);

27

1. getaddrinfo()
- Performs a DNS Lookup for a hostname

- Use “hints” to specify constraints (struct addrinfo *)

- Get back a linked list of struct addrinfo results

int getaddrinfo(const char *hostname,
 const char *service,

 const struct addrinfo *hints,
 struct addrinfo **res);

28

1. getaddrinfo() - Interpreting Results
struct addrinfo {

int ai_flags; // additional flags
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes
struct sockaddr* ai_addr; // pointer to socket addr
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can form a linked list

};

- ai_addr points to a struct sockaddr describing the socket address

29

1. getaddrinfo() - Interpreting Results
With a struct sockaddr*:

- The field sa_family describes if it is IPv4 or IPv6

- Cast to struct sockaddr_in* (v4)or struct sockaddr_in6* (v6)

to access/modify specific fields

- Store results in a struct sockaddr_storage to have a space big enough for

either

30

2.

31

2. socket()
- Creates a “raw” socket, ready to be bound

- Returns file descriptor (sockfd) on success, -1 on failure

int socket(int domain, // AF_INET, AF_INET6
 int type, // SOCK_STREAM (TCP)
 int protocol); // 0

32

3.

33

3. connect()
- Connects an available socket to a specified address

- Returns 0 on success, -1 on failure

int connect (int sockfd, // from 2
 const struct sockaddr *serv_addr, // from 1
 socklen_t addrlen) ; // size of serv_addr

34

3. connect()
- Connects an available socket to a specified address

- Returns 0 on success, -1 on failure

int connect (int sockfd, // from 2
 const struct sockaddr *serv_addr, // from 1
 socklen_t addrlen) ; // size of serv_addr

Cast sockaddr_storage* to sockaddr* !

35

4. read/write and 5. close
- Thanks to the file descriptor abstraction, use as normal!
- read from and write to a buffer, the OS will take care of

sending/receiving data across the network
- Make sure to close the fd afterward

36

