
C++ continued
C++ Classes and Dynamic Memory

1

Logistics
Thursday (today)

HW2 @ 11:59 pm
Monday

Exercise 12 @ 10:30 am
Mid-Quarter Survey @ 11:59 PM

Wednesday:
Exercise 13 @ 10:30 am

2

Section Plan - Lots of Review and Practice Today!
● C++ Classes (more)

○ Understanding destructor ordering

● Practice, practice, and more practice
○ ctor, cctor, dtor, op=
○ new and delete
○ Understanding Rule of 3

3

Questions and review
● What do the following access modifiers mean?
− public:
− protected:
− private:
− friend:

● What is the default access modifier for a struct in C++?

Member is accessible by anyone
Member is accessible by this class and any derived classes
Member is only accessible by this class
Allows access of private/protected members to foreign functions
and/or classes where this modifier is present

A struct can be thought of as a class where all members are default public
instead of default private. In C++, it is also possible to give member functions (such
as a constructor) to structs

4

When we assign a struct variable to another, what happens when the structure
contains an array?

coords= [3, 1, 4]
id = 1

− Compiler automatically performs
Deep Copy for array members

− Same behavior for arrays in
classes

coords= [0.0, 0.0, 0.0]
id = 2

Origin = qt

coords= [3, 1, 4]
id = 1

coords= [3, 1, 4]
id = 1

Origin

Origin qt

qt

struct vector {
 double coords[3];
 int id;
};

5

Constructors Revisited
class Int {
 public:
 Int() { ival = 17; cout << "default(" << ival << ")" << endl; }
 Int(int n) { ival = n; cout << "ctor(" << ival << ")" << endl; }
 Int(const Int &n) {
 ival = n.ival;
 cout << "cctor(" << ival << ")" << endl;
 }
 ~Int() { cout << "dtor(" << ival << ")" << endl; }
};

● Copy Constructor (cctor): Creates a new instance based on another instance (must take a
reference!). Invoked when passing/returning a non-reference object to/from a function.

● Destructor (dtor): Cleans up the class instance. Deletes dynamically allocated memory (if
any). 6

● Constructor (ctor): Can define any number as long as they have different parameters.
Constructs a new instance of the class.

What is getting called here?

int main() {
 Int p; // 1.
 Int q(p); // 2.
 Int r(5); // 3.
 Int s = r; // 4.
 p = s; // 5.
}

default ctor
copy ctor
1 arg ctor
copy ctor (cctor)
assignment operator

ival_ = 17

p

ival_ = 17

q

ival_ = 5

r

ival_ = 5

s

ival_ = 5

7

Questions and review

● What is the destruction order?

int main(int argc, char **argv) {
 Int p; // default ctor
 Int q(p); // copy ctor (equivalent to: Int q = p;)
 Int r(5); // 1 arg ctor
 q.set(p.get()+1);

}

Destruction order is the reverse of construction order.

// r dtor
// q dtor
// p dtor

8

Design considerations
● What happens if you don’t define a copy constructor? Or an assignment

operator? Or a destructor? Why might this be bad?

● How can you disable the copy constructor/assignment operator/destructor?

- In C++, if you don’t define any of these, a default one will be synthesized
for you.

- The default copy constructor does a shallow copy of all fields.
- The default assignment operator does a shallow copy of all fields.
- The default destructor calls the default destructors of any fields that have

them.

Set their prototypes equal to the keyword “delete”: ~SomeClass() = delete;

9

Destructors Review

10

When are destructors invoked? In what order are they invoked when multiple
objects are getting destructed?

- An object’s destructors is run when it falls out of scope, or when the
delete keyword is used on heap allocated objects constructed with new

- Invoked in reverse order of construction

What happens when a destructor actually executes? (Hint: what happens if a
dtor body doesn’t destruct all its members?)

- Destructors are run in reverse order of construction: (1) run destructor
body (2) destruct remaining members in reverse order of declaration

When are these destructors run?

int main() {
 Int p;
 Int q(p);
 Int r(5);
 Int s = r;
 p = s;
}

ival_ = 5

p

ival_ = ?

q

ival_ = 5

r

ival_ = 5

s

s dtor run

r dtor run

q dtor run

p dtor run

11

Initialization Lists
When is the initialization list of a constructor run, and in what order are data
members initialized?

What happens if data members are not included in the initialization list?

The initialization list is run before the body of the ctor, and data
members are initialized in the order that they are defined in the class,
not by initialization list ordering

Data members that don’t appear in the initialization list are default
initialized/constructed before ctor body is executed.

12

Steps for Construction and Destruction
Construction:
1. Construct/initialize members in order of declaration:

- If: member appears in initialization list, apply initialization
- Else: default initialize

2. Run constructor body

Destruction:
1. Run destructor body
2. Destruct remaining members in reverse order of member declaration

Exercise 1: Constructors and Destructors!

int main(int argc, char **argv) {
 Int p;
 Int q(p);
 Int r(5);
 q.set(p.get()+1);
 return EXIT_SUCCESS;
}

default(17)
cctor(17)
ctor(5)
get(17)
set(18)
dtor(5)
dtor(18)
dtor(17)

New and Delete operators

New: Allocates the type on the heap, calling the specified constructor if it is a
class type. Syntax:

type* ptr = new type;

type* heap_arr = new type[num];

Delete: Deallocates the type from the heap, calling the destructor if it is a class
type. For anything you called “new” on, you should at some point call “delete” to
clean it up. Syntax:

delete ptr;

delete[] heap_arr;
15

Exercise 3: Memory Leaks
class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int *x_;
};
int main(int argc, char **argv) {
 Leaky **lkyptr = new Leaky *;
 Leaky *lky = new Leaky();
 *lkyptr = lky;
 delete lkyptr;
 return EXIT_SUCCESS;
}

16

0x602010

lkyptr

stack heap

0x602030

lky

x_

 0x00x602030

0x602050

5

class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int *arr_;
};

int main(int argc, char** argv) {
 BadCopy *bc1 = new BadCopy;
 BadCopy *bc2 = new BadCopy(*bc1); // cctor
 delete bc1;
 delete bc2;
 return EXIT_SUCCESS;
}

bc1 bc2

arr_ arr_

Invalid delete: BAD

Exercise 4: Bad Copy

as if!!

17

Exercise 5: Classes Usage

18

Question 5

19

……

……

Question 5

20

……

……

Question 5

21

……

……

Questions and review

● What is the destruction order?

int main(int argc, char **argv) {
 Int p; // default ctor
 Int q(p); // copy ctor (equivalent to: Int q = p;)
 Int r(5); // 1 arg ctor
 q.set(p.get()+1);

}

Destruction order is the reverse of construction order.

// r dtor
// q dtor
// p dtor

22

When we assign a struct variable to another, what happens when the structure
contains an array?

coords= [3, 1, 4]
id = 1

− Compiler automatically performs
Deep Copy for array members

− Same behavior for arrays in
classes

coords= [0.0, 0.0, 0.0]
id = 2

Origin = qt

coords= [3, 1, 4]
id = 1

coords= [3, 1, 4]
id = 1

Origin

Origin qt

qt

struct vector {
 double coords[3];
 int id;
};

23

Exercise 2: Construction and Initialization
class Foo {
 public:
 Foo() { cout << 'u'; }
 Foo(int x) { cout << 'n'; }
 ~Foo() { cout << 'd'; }
};

class Bar {
 public:
 Bar(int x) { other_ = new Foo(x); cout << 'g'; }
 ~Bar() { delete other_; cout << 'e'; }
 private:
 Foo* other_;
};

class Baz {
 public:
 Baz(int z) : bar_(z) { cout << 'r'; }
 ~Baz() { cout << 'a'; }
 private:
 Foo foo_;
 Bar bar_;
};

int main(){
 Baz (1);
 cout << endl;
}

u n g r a d e d

