

333 Section 9 - Concurrency and pthreads
Welcome back :)

Process

● A process has a virtual address space. Each process is started with a single thread but can
create additional threads.

Threads
● A thread contains a sequential execution of a program and is contained within a process.
● Threads of the same process share a memory/address space: use the same heap, globals,

and code but each thread has its own stack.

POSIX threads (pthreads) API
● Part of the standard C/C++ libraries and declared in pthread.h .
● Must compile and link with -pthread .

int pthread_create(pthread_t * thread, const pthread_attr_t * attr,
 void * (* start_routine) (void *), void * arg);
➔ thread: Output parameter for thread identifier
➔ attr: Used to set thread attributes. Use NULL for defaults.
➔ start_routine: Pointer to a function that the thread will execute upon creation.
➔ arg: A single argument that may be passed to start_routine . NULL may be used if no

argument is to be passed.
★ Creates a new thread and calls start_routine(arg) .
★ Returns 0 if successful and an error number otherwise.

int pthread_join(pthread_t thread, void ** retval);
★ Called by parent thread to wait for the termination of the thread specified by thread . If retval

is non-NULL , then retval acts an output parameter and the address passed to
pthread_exit by the finished thread is stored in it.

★ Returns 0 if successful and an error number otherwise.

void pthread_exit(void * retval);
★ Terminates the calling thread with an optional termination status parameter, retval , which can

just be set to NULL.

POSIX mutual exclusion (mutex) API
● Restrict access to sections of code in order to protect shared data from being simultaneously

accessed by multiple threads.

int pthread_mutex_init(pthread_mutex_t * mutex,
 const pthread_mutexattr_t * attr);
★ Initializes the mutex referenced by mutex with attributes specified by attr (use NULL for

adefault ttributes).

int pthread_mutex_destroy(pthread_mutex_t * mutex);
★ Destroys (i.e. uninitializes) the mutex object referenced by mutex .

int pthread_mutex_lock(pthread_mutex_t * mutex);
★ Attempts to acquire the mutex object referenced by mutex and blocks if it’s currently held by

another thread. Should be placed at the start of your critical section of code.

int pthread_mutex_unlock(pthread_mutex_t * mutex);
★ Releases the mutex object referenced by mutex . Should be placed at the end of your critical

section of code.

Question
Imagine we have:
 MyClass onTheStack;
 pthread_t child;
 pthread_create(&child, nullptr, foo, &onTheStack);

onTheStack is on the parent thread’s stack. However, each thread has its own stack!
Can we still access onTheStack from the child? Why or why not?

1)

a) List some reasons why it's better to use multiple threads within the same process
rather than multiple processes running the same program

 b) What benefits could there be to using multiple processes instead of multiple threads?

 c) Which registers will for sure be different between two threads that are executing
different functions?

 d) How does the OS distinguish the threads?

2) Consider the following multithreaded C program:

int g = 0;
void *worker(void *ignore) {
 for (int k = 1; k <= 3; k++) {
 g = g + k;
 }
 printf("g = %d\n", g);
 return NULL;
}

int main() {
 pthread_t t1, t2;
 int ignore;
 ignore = pthread_create(&t1, NULL, &worker, NULL);
 ignore = pthread_create(&t2, NULL, &worker, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 return EXIT_SUCCESS;
}

Give three different possible outputs (there are many)

What are the possible final values of the global variable ‘g’? (circle all possible)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+

3) It’s the payday! It’s time for UW to pay each of the 333 TAs their monthly salary. Each of the
TA’s bank accounts is inside the bank_accounts[] array and the person who is in charge of
paying the TAs is a 333 student and decided to use pthreads to pay the TAs by adding 1000
into each bank account. Here is the program the student wrote:
// Assume all necessary libraries and header files are included

const int NUM_TAS = 10 ;

static int bank_accounts[NUM_TAS];
static pthread_mutex_t sum_lock;

void *thread_main(void *arg) {
 int *TA_index = reinterpret_cast<int*>(arg);

 pthread_mutex_lock(&sum_lock);

 bank_accounts[*TA_index] += 1000 ;
 pthread_mutex_unlock(&sum_lock);

 delete TA_index;
 return NULL ;
}

int main(int argc, char ** argv) {
 pthread_t thds[NUM_TAS];
 pthread_mutex_init(&sum_lock, NULL);

 for (int i = 0 ; i < NUM_TAS; i++) {
 int *num = new int (i);
 if (pthread_create(&thds[i], NULL , &thread_main, num) != 0) {
 /*report error*/

 }

 }

 for (int i = 0 ; i < NUM_TAS; i++) {
 cout << bank_accounts[i] << endl;

 }

 pthread_mutex_destroy(&sum_lock);

 return 0 ;
}

(see next page)

a) Does the program increase the TAs’ bank accounts correctly? Why or why not?

b) Could we implement this program using processes instead of threads? Why would or why
wouldn’t we want to do this?

c) Assume that all the problems, if any, are now fixed. The student discovers that the program
they wrote is kinda slow even though it's a multithreaded program. Why might it be the case?
And how would you fix that?

4) Calculating primes is slow. In C++, use 10 threads to calculate the primes less than 1,000.
Then, print them out in ascending order:

#define NTHREAD 10
struct Bounds {

 int lo;
 int hi;
 Bounds(int lo, int hi): lo(lo), hi(hi) {}
};

bool isPrime(int num) { … }

Void *getPrimes(void *data) {
 Bounds *b = reinterpret_cast <Bounds*>(data);
 // setup a way to store the primes we find in order

 // calculate primes

 // ???

 return
}

// continued on next page

int main() {
 // make space to store our threads and data

 std::vector<std::unique_ptr<Bounds>> bounds;

 // create and run our threads

 int err;
 for (int i = 0 ; i < NTHREAD; i++) {

 }

 // wait for each thread to finish and get its data

 for (int i = 0 ; i < NTHREAD; i++) {
 // wait for thread, storing its return value

 // print the data

 }

 return 0 ;
}

