
CSE 333 – SECTION 2
gdb, valgrind, pointers & structs
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Questions, Comments, Concerns

•Do you have any?
•Exercises going ok?
•Lectures make sense?
•Homework 1 – START EARLY!
•Remember – no class tomorrow

Upcoming Due Dates:
•Due Monday (7/6):        Exercise 4 @ 10:30 am
•Due Wednesday (7/8):  Exercise 5 @ 10:30 am
•Due in 1 week (7/9):  HW1 @ 11:59 pm
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Motivation & Tools

• The projects are big, lots of potential for bugs
• Debugging is a skill that you will need throughout your career

• gdb (GNU Debugger) is a debugging tool
• Handles more than just assembly.
• Lots of helpful features to help with debugging
• Very useful in tracking undefined behavior

• Valgrind is a memory debugging tool
• Checks for various memory errors
• If you are running into odd behavior, running valgrind may point out the 
cause.
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Exercise 1: Debugging with gdb

4



Segmentation fault

•Causes of segmentation fault
• Dereferencing uninitialized pointer
• Null pointer
• A previously freed pointer
• Accessing end of an array
• …

•gdb (GNU Debugger) is very helpful for identifying the 
source of a segmentation fault

•backtrace
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Man pages

•If you are unsure of what a C library function does, use 
man to find more information.

•Example: man strcpy

•Note: man also supports various unix commands, but 
doesn’t hold info for C++
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Other Esssential gdb Commands

•run <command_line_args>
•backtrace
•frame, up, down
•print <expression>
•quit
•breakpoints

•(see next slide)
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gdb Breakpoints

•Usage:
•break <function_name>
•break <filename:line#>

•Example: break CSE333.c:20
// ^ sets breakpoint for when Verify333 fails

•Can advance with:
•continue
•next
•step
• finish

•More info linked from the course website!
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Exercise 2: Leaky code and 
Valgrind Demo
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Memory Errors 

• Use of uninitialized memory
• Reading/writing memory after it has been freed – Dangling pointers
• Reading/writing to the end of malloc'd blocks
• Reading/writing to inappropriate areas on the stack
• Memory leaks where pointers to malloc'd blocks are lost

Valgrind is your friend!!
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Exercise 3: Structs and Pointers
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Defining structs and operators
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Pointers and Structs



Typedef 

Similar to
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typedef type name



Fruits & Orchards
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main
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origin

volume
apple

"Apple Orchard\0"

applePtr

33

console output
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int main(int argc, char* argv[]) {
  Orchard bt;
  strcpy(bt.name, "Apple Orchard");

  Fruit apple;
  Fruit* applePtr = &apple;
  apple.origin = &bt;
  apple.volume = 33;
  applePtr->volume = apple.volume;

  printf("1. %d, %s \n",
applePtr->volume,
applePtr->origin->name);

  …

1, 33, Apple Orchard
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… 
apple.volume = eatFruit(apple);
printf("2. %d, %s \n", applePtr->volume,

applePtr->origin->name);

int eatFruit(Fruit fruit) {
  fruit.volume -= 10;
  strcpy(fruit.origin->name,
      "Eaten Fruit Orchard");
  return fruit.volume;
}

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
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…
growFruit(applePtr);
printf("3. %d, %s \n", applePtr->volume,

applePtr->origin->name);

void growFruit(Fruit* fruitPtr) {
  fruitPtr->volume += 7;
}

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
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1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
4, 12, Banana Orchard

void exchangeFruit(Fruit** fruitPtrPtr) {
  Fruit *banana =
      (Fruit*)malloc(sizeof(Fruit));
  banana->volume = 12;
  banana->origin =
      
(OrchardPtr)malloc(sizeof(Orchard));
  strcpy(banana->origin->name,
      "Banana Orchard");
  *fruitPtrPtr = banana;
}

exchangeFruit(&applePtr);
printf("4. %d, %s \n", applePtr->volume,

applePtr->origin->name);
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1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
4, 12, Banana Orchard



Section exercise

• Handouts.
• Work with a partner, if you wish.
• Look at the expandable vector code in imsobuggy.c.
• First, try to find all the bugs by inspection.
• Then try to use Valgrind on the same code.
Code is located at
  https://courses.cs.washington.edu/courses/cse333/20sp/sections/sec2-code/
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