CSE 333 — SECTION 2

gdb, valgrind, pointers & structs

Questions, Comments, Concerns

-Do you have any?

- Exercises going ok?

-Lectures make sense?
-Homework 1 — START EARLY!
-Remember — no class tomorrow

Upcoming Due Dates:

-Due Monday (7/6): Exercise 4 @ 10:30 am
-Due Wednesday (7/8): Exercise 5 @ 10:30 am
-Due in 1 week (7/9): HW1 @ 11:59 pm

Motivation & Tools

- The projects are big, lots of potential for bugs
-Debugging is a skill that you will need throughout your career

-gdb (GNU Debugger) is a debugging tool
- Handles more than just assembly.
- Lots of helpful features to help with debugging
- Very useful in tracking undefined behavior

- Valgrind is a memory debugging tool
- Checks for various memory errors

- If you are running into odd behavior, running valgrind may point out the
cause.

Exercise 1: Debugging with gdb

Segmentation fault

-Causes of segmentation fault
- Dereferencing uninitialized pointer
- Null pointer
- A previously freed pointer
- Accessing end of an array

-gdb (GNU Debugger) is very helpful for identifying the
source of a segmentation fault

-backtrace

Man pages

-If you are unsure of what a C library function does, use
man to find more information.

-Example: man strcpy

-Note: man also supports various unix commands, but
doesn’t hold info for C++

Other Esssential gdb Commands

‘run <command_line_args>
-backtrace
-frame, up, down
-print <expression>
-quit
-breakpoints
-(see next slide)

L
gdb Breakpoints

-Usage:
-break <function_name>
-break <filename:line#>

-Example: break CSE333.c:20
/I ™ sets breakpoint for when Verify333 fails

-Can advance with:
-continue
-next
-step
-finish
-More info linked from the course website!

Exercise 2: Leaky code and
Valgrind Demo

Memory Errors

- Use of uninitialized memory

- Reading/writing memory after it has been freed — Dangling pointers
- Reading/writing to the end of malloc'd blocks

- Reading/writing to inappropriate areas on the stack

- Memory leaks where pointers to malloc'd blocks are lost

Valgrind is your friend!!

10

Exercise 3: Structs and Pointers

11

Pointers and Structs

Defining structs and operators

struct course_st {
char *name;
uintlée_t id;

s

int main(int _argc, char **argv) {
struct course_st]a = {"Systems programming”,

struct course_st|b;

struct course_st *bhptr = &b;
bPtr->name = "Hello world!";
ba3d =235

return EXIT_SUCCESS;

333};

12

Typedef

typedeﬂ struct course_st {
char *name;

uintl6e + d- -] .
} Course, *CoursePtr]; [&m%ﬂoﬂﬂ:x, YJ
int mainCint ’eygeci?ef" t e/)name
Course a = stems pr amming’ 333}%;
Course b;
CoursePtr bPtr = &b;
bPtr->name = "Hello world!";
boad - — 1223

return EXIT_SUCCESS;

13

Fruits & Orchards

typedef struct fruit_st {
OrchardPtr origin;
int volume;

} Fruit;

typedef struct orchard st {
char name[20] ;
} Orchard, ¥*CrchardPtr;

Fruit
origin

volume

Orchard

Name |Angry Orchards |

14

main

int main (int argc, char* argv([]) { bt
Orchard bt;
strcpy (bt.name, "Apple Orchard");

name | "Apple Orchard\6"
\
origin T

FrU}t apple; appie volume 33
Fruit* applePtr = &apple;

apple.origin = &bt; N
apple.volume = 33; applePtr
applePtr->volume = apple.volume;

console output

printf ("1. %d, %s \n",
applePtr->volume, 1, 33, Apple Orchard
applePtr->origin->name) ;

15

apple.volume = eatirult (apple);
printf("2. %d, %s \n", applePtr->volume,
applePtr->origin->name) ;

main eatFruit
S -
bt|name | "Eaten Fruit Orchard\@" origin T
T fruit
volume 23
origin | ——
apple
volume 23
N
applePtr

console output

int eatifruit (Fruit fruit) {
fruit.volume -= 10;
strcpy (fruit.origin—->name,
"Eaten Fruit Orchard");
return fruit.volume;

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard

16

growbkrult (applePtr) ;
printf ("3. %d, %s \n", applePtr->volume,
applePtr->origin->name) ;

main
bt|name | "Eaten Fruit Orchard\9"
\
origin T
apple -
PP volume 30 growFruit
fruitPtr
~
applePtr

console output

void growFruit (Fruit* fruitPtr) { 1, 33, Apple Orchard
fruitPtr->volume += 7; 2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard

17

void exchangeFruit (Fruit** fruitPtrPtr)

Fruit *banana =
(Fruit*) malloc (sizeof (Fruit)):;

banana->volume = 12;

main
banana->origin =
bt |name | "Eaten Fruit Orchard\@” (OrchardPtr) malloc (sizeof (Orchard));
o strcpy (banana->origin->name,
"Banana Orchard"):;
origin [*fruitPtrPtr = banana;
apple } :
volume 30 B exchangeFruit
N ’//”””/’/////// fruitPtrPtr | —
applePtr banana |-
console output

Heap Allocated Memory

origin 1, 33, Apple Orchard

volume / - 2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
4,1

2, Banana Orchard

name | "Banana Orchard”

exchangelrult (&applePtr);
printf("4. %d, %s \n", applePtr->volume,

applePtr->origin->name) ;

{

18

main eatFruit
T T
bt|name | "Eaten Fruit Orchard\@" origin | —
I apple .
volume 23
origin T
apple volume 30 /Mit growFruit
/ fruitPtrPtr | — fruitPtr
applePtr banana |-
Heap Allocated Memory console output
origin
J 3, Apple Orchard

1,3

volume / 12 2, 23, Eaten Fruit Orchard
3,3
4 1

0, Eaten Fruit Orchard
2, Banana Orchard

name | "Banana Orchard" ’

19

Section exercise

- Handouts.

- Work with a partner, if you wish.

- Look at the expandable vector code in imsobuggy.c.
- First, try to find all the bugs by inspection.

- Then try to use Valgrind on the same code.

Code is located at
https://courses.cs.washington.edu/courses/cse333/20sp/sections/sec2-code/

20

https://courses.cs.washington.edu/courses/cse333/20sp/sections/sec2-code/

