
CSE 333 – SECTION 2
gdb, valgrind, pointers & structs

1

Questions, Comments, Concerns

•Do you have any?
•Exercises going ok?
•Lectures make sense?
•Homework 1 – START EARLY!
•Remember – no class tomorrow

Upcoming Due Dates:
•Due Monday (7/6): Exercise 4 @ 10:30 am
•Due Wednesday (7/8): Exercise 5 @ 10:30 am
•Due in 1 week (7/9): HW1 @ 11:59 pm

2

Motivation & Tools

• The projects are big, lots of potential for bugs
• Debugging is a skill that you will need throughout your career

• gdb (GNU Debugger) is a debugging tool
• Handles more than just assembly.
• Lots of helpful features to help with debugging
• Very useful in tracking undefined behavior

• Valgrind is a memory debugging tool
• Checks for various memory errors
• If you are running into odd behavior, running valgrind may point out the
cause.

3

Exercise 1: Debugging with gdb

4

Segmentation fault

•Causes of segmentation fault
• Dereferencing uninitialized pointer
• Null pointer
• A previously freed pointer
• Accessing end of an array
• …

•gdb (GNU Debugger) is very helpful for identifying the
source of a segmentation fault

•backtrace

5

Man pages

•If you are unsure of what a C library function does, use
man to find more information.

•Example: man strcpy

•Note: man also supports various unix commands, but
doesn’t hold info for C++

6

Other Esssential gdb Commands

•run <command_line_args>
•backtrace
•frame, up, down
•print <expression>
•quit
•breakpoints

•(see next slide)

7

gdb Breakpoints

•Usage:
•break <function_name>
•break <filename:line#>

•Example: break CSE333.c:20
// ^ sets breakpoint for when Verify333 fails

•Can advance with:
•continue
•next
•step
• finish

•More info linked from the course website!

8

Exercise 2: Leaky code and
Valgrind Demo

9

Memory Errors

• Use of uninitialized memory
• Reading/writing memory after it has been freed – Dangling pointers
• Reading/writing to the end of malloc'd blocks
• Reading/writing to inappropriate areas on the stack
• Memory leaks where pointers to malloc'd blocks are lost

Valgrind is your friend!!

10

Exercise 3: Structs and Pointers

11

Defining structs and operators

12

Pointers and Structs

Typedef

Similar to

13

typedef type name

Fruits & Orchards

14

main

bt name

origin

volume
apple

"Apple Orchard\0"

applePtr

33

console output

15

int main(int argc, char* argv[]) {
 Orchard bt;
 strcpy(bt.name, "Apple Orchard");

 Fruit apple;
 Fruit* applePtr = &apple;
 apple.origin = &bt;
 apple.volume = 33;
 applePtr->volume = apple.volume;

 printf("1. %d, %s \n",
applePtr->volume,
applePtr->origin->name);

 …

1, 33, Apple Orchard

33

33

"Apple Orchard\0"

main

"Eaten Fruit Orchard\0"bt name

origin

volume 23
apple

applePtr

console output

eatFruit

origin

volume
fruit

23

16

…
apple.volume = eatFruit(apple);
printf("2. %d, %s \n", applePtr->volume,

applePtr->origin->name);

int eatFruit(Fruit fruit) {
 fruit.volume -= 10;
 strcpy(fruit.origin->name,
 "Eaten Fruit Orchard");
 return fruit.volume;
}

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard

2330

"Apple Orchard\0"

main

"Eaten Fruit Orchard\0"bt name

origin

volume
apple

applePtr

console output

growFruit

fruitPtr

17

…
growFruit(applePtr);
printf("3. %d, %s \n", applePtr->volume,

applePtr->origin->name);

void growFruit(Fruit* fruitPtr) {
 fruitPtr->volume += 7;
}

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard

2330

"Apple Orchard\0"

main

"Eaten Fruit Orchard\0"bt name

origin

volume
apple

applePtr

console output

exchangeFruit

fruitPtrPtr

banana

Heap Allocated Memory

name

origin

volume 12

"Banana Orchard"

18

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
4, 12, Banana Orchard

void exchangeFruit(Fruit** fruitPtrPtr) {
 Fruit *banana =
 (Fruit*)malloc(sizeof(Fruit));
 banana->volume = 12;
 banana->origin =

(OrchardPtr)malloc(sizeof(Orchard));
 strcpy(banana->origin->name,
 "Banana Orchard");
 *fruitPtrPtr = banana;
}

exchangeFruit(&applePtr);
printf("4. %d, %s \n", applePtr->volume,

applePtr->origin->name);

2330

"Apple Orchard\0"

main

"Eaten Fruit Orchard\0"bt name

origin

volume
apple

applePtr

console output

exchangeFruit

fruitPtrPtr

banana

Heap Allocated Memory

name

origin

volume 12

"Banana Orchard"

growFruit

fruitPtr

eatFruit

origin

volume
apple

23

19

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
4, 12, Banana Orchard

Section exercise

• Handouts.
• Work with a partner, if you wish.
• Look at the expandable vector code in imsobuggy.c.
• First, try to find all the bugs by inspection.
• Then try to use Valgrind on the same code.
Code is located at
 https://courses.cs.washington.edu/courses/cse333/20sp/sections/sec2-code/

20

https://courses.cs.washington.edu/courses/cse333/20sp/sections/sec2-code/

