
CSE333, Summer 2020L25: Course Wrap-Up

Course Wrap-Up
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
Ian Hsiao Allen Jung Sylvia Wang

CSE333, Summer 2020L25: Course Wrap-Up

Administrivia

❖ hw4 due tomorrow (8/20)

▪ Submissions accepted until Sunday (8/23)

▪ If you want to use late day(s), you MUST let staff know. Make a
private post on ed or send an email to staff letting us know you
want to use late day(s).

❖ Course evaluations due Friday night

▪ Please fill these out! <3

❖ Grades for various assignments have been posted. PLEASE
CHECK THESE and contact staff if something seems
incorrect!!!

2

CSE333, Summer 2020L25: Course Wrap-Up

So what have we been doing
for the last 9 weeks?

?

3

Ideally you would know everything I am

talking about in this lecture, but the

red stars indicate things you really

should leave the course knowing

CSE333, Summer 2020L25: Course Wrap-Up

Course Goals

❖ Explore the gap between:

4

The computer is a magic
machine that runs programs!

Intro 351

The computer is a stupid machine
that executes really, really simple

instructions (really, really fast).

CSE333, Summer 2020L25: Course Wrap-Up

Lecture Outline

❖ Systems Programming: The What

❖ Systems Programming: The Why

5

CSE333, Summer 2020L25: Course Wrap-Up

Systems Programming: The What

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

▪ Programming: C / C++

▪ Discipline: design, testing, debugging, performance analysis

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, …

• Most important: a deep understanding of the “layer below”

6

CSE333, Summer 2020L25: Course Wrap-Up

Main Topics

❖ C

▪ Low-level programming language

❖ C++

▪ The 800-lb gorilla of programming languages

▪ “better C” + classes + STL + smart pointers + …

❖ Memory management

❖ System interfaces and services

❖ Networking basics – TCP/IP, sockets, …

❖ Concurrency basics – POSIX threads, synchronization

7

CSE333, Summer 2020L25: Course Wrap-Up

The C/C++ Ecosystem

❖ System layers:

▪ C/C++

▪ Libraries

▪ Operating system

❖ Building Programs:
▪ Pre-processor (cpp, #include, #ifndef, …)

▪ Compiler: source code → object file (.o)

▪ Linker: object files + libraries → executable

❖ Build tools:
▪ make and related tools

▪ Dependency graphs

8

CSE333, Summer 2020L25: Course Wrap-Up

Structure of C Programs

❖ Standard types and operators
▪ Primitives, extended types, structs, arrays, typedef, etc.

❖ Functions
▪ Defining, invoking, execution model

❖ Standard libraries and data structures
▪ Strings, streams, etc.

▪ C standard library and system calls, how they are related

❖ Modularization
▪ Declaration vs. definition

▪ Header files and implementations

▪ Internal vs. external linkage

❖ Handling errors without exception handling
▪ errno and return codes

9

CSE333, Summer 2020L25: Course Wrap-Up

C++ (and C++11)

❖ A “better C”

▪ More type safety, stream objects, memory management, etc.

❖ References and const

❖ Classes and objects!

▪ So much (too much?) control: constructor, copy constructor,
assignment, destructor, operator overloading

▪ Inheritance and subclassing

• Dynamic vs. static dispatch, virtual functions, vtables and vptrs

• Pure virtual functions and abstract classes

• Subobjects and slicing on assignment

❖ Copy semantics vs. move semantics

10

CSE333, Summer 2020L25: Course Wrap-Up

C++ (and C++11)

❖ C++ Casting

▪ What are they and why do we distinguish between them?

▪ Implicit conversion/construction and explicit

❖ Templates – parameterized classes and functions

▪ Similarities and differences from Java generics

▪ Template implementations via expansion

❖ STL – containers, iterators, and algorithms
▪ vector, list, map, set, etc.

▪ Copying and types

❖ Smart Pointers
▪ unique_ptr, shared_ptr, weak_ptr

▪ Reference counting and resource management

11

CSE333, Summer 2020L25: Course Wrap-Up

Program Execution

❖ What’s in a process?

▪ Address space

▪ Current state

• SP, PC, register values, etc.

▪ Thread(s) of execution

▪ Environment

• Arguments, open files, etc.

12

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

Mostly review from 351….

CSE333, Summer 2020L25: Course Wrap-Up

Memory

❖ Object scope and lifetime

▪ Static, automatic, and dynamic allocation / lifetime

❖ Pointers and associated operators (&, *, ->, [])

▪ Can be used to link data or fake “call-by-reference”

❖ Dynamic memory allocation
▪ malloc/free (C), new/delete (C++)

▪ Who is responsible? Who owns the data? What happens when
(not if) you mess this up? (dangling pointers, memory leaks, …)

❖ Tools
▪ Debuggers (gdb), monitors (valgrind)

▪ Most important tool: thinking!

13

CSE333, Summer 2020L25: Course Wrap-Up

The Operating System

❖ Operating System has more permissions
▪ User must ask OS to handle restricted operations

▪ Only OS can directly interact with hardware, read from disk, …

❖ System Calls
▪ OS provides an interface for User Processes to request the OS to

complete a protected operation.

▪ Library calls (fread/fwrite/…) will also have to go through the OS
via system calls.

❖ I/O
▪ Reading/Writing to disk takes a LONG time

• (relative to other operations)

▪ Strategies like buffering should be used to minimize number of
disk accesses.

14

CSE333, Summer 2020L25: Course Wrap-Up

Network Programming

Client side

1) Get remote host IP
address/port

2) Create socket

3) Connect socket to remote
host

4) Read and write data

5) Close socket

15

Server side

1) Get local host IP
address/port

2) Create socket

3) Bind socket to local host

4) Listen on socket

5) Accept connection from
client

6) Read and write data

7) Close socket

▪ Error handling

▪ Blocking vs. non-blocking calls

CSE333, Summer 2020L25: Course Wrap-Up

Concurrency

❖ Why or why not?

▪ Better throughput, resource utilization (CPU, I/O controllers)

▪ Tricky to get right – harder to code and debug

❖ Threads – “lightweight”

▪ Address space sharing; separate stacks for each thread

▪ Standard C/C++ library: pthreads

❖ Processes – “heavyweight”

▪ Isolated address spaces

▪ Forking functionality provided by OS

❖ Synchronization

▪ Data races, locks/mutexes, how much to lock…

16

CSE333, Summer 2020L25: Course Wrap-Up

Processes vs Threads on One Slide

17

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CSE333, Summer 2020L25: Course Wrap-Up

18

pollev.com/cse33320su

What is your Favourite Topic In CSE 333?

CSE333, Summer 2020L25: Course Wrap-Up

Lecture Outline

❖ Systems Programming: The What

❖ Systems Programming: The Why

19

CSE333, Summer 2020L25: Course Wrap-Up

Systems Programming: The Why

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

1) Understanding the “layer below” makes you a better
programmer at the layer above

2) Gain experience with working with and designing more complex
“systems”

3) Learning how to handle the unique challenges of low-level
programming allows you to work directly with the countless
“systems” that take advantage of it

20

CSE333, Summer 2020L25: Course Wrap-Up

So What is a System?

❖ “A system is a group of interacting or interrelated entities
that form a unified whole. A system is delineated by its
spatial and temporal boundaries, surrounded and
influenced by its environment, described by its structure
and purpose and expressed in its functioning.”

▪ https://en.wikipedia.org/wiki/System

▪ Still vague, maybe still confusing

❖ But hopefully you have a better idea of what a system in
CS is now

▪ What kinds of systems have we seen…?

21

https://en.wikipedia.org/wiki/System

CSE333, Summer 2020L25: Course Wrap-Up

Software System

❖ Writing complex software systems is difficult!

▪ Modularization and encapsulation of code

▪ Resource management

▪ Documentation and specification are critical

▪ Robustness and error handling

▪ Must be user-friendly and maintained (not write-once, read-never)

❖ Discipline: cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Documentation (code comments, design docs)

▪ If programmer discipline is interesting to you, take CSE 331!

22

CSE333, Summer 2020L25: Course Wrap-Up

The Computer as a System

❖ Modern computer systems are increasingly complex!

▪ Networking, concurrency/parallelism, distributed systems

▪ Buffered vs. unbuffered I/O

23

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Summer 2020L25: Course Wrap-Up

A Network as a System

❖ A networked system relies heavily on its connectivity

▪ Depends on materials, physical distance, network topology,
protocols

❖ Conceptual abstraction layers

▪ Physical, data link, network, transport, session, presentation,
application

▪ Layered protocol model

• We focused on IP (network), TCP (transport), and HTTP (application)

❖ Network addressing

▪ MAC addresses, IP addresses (IPv4/IPv6), DNS (name servers)

❖ Routing

▪ Layered packet payloads, security, and reliability
24

CSE333, Summer 2020L25: Course Wrap-Up

Congratulations!

❖ Look how much we learned!

❖ Lots of effort and work, but lots of useful takeaways:
▪ Debugging practice and metacognition (gdb, bug journals)

▪ Reading documentation

▪ Tools (git, valgrind, makefiles)

▪ C and C++ familiarity, including multithreaded and networked
code

❖ No exam to study for, but go forth and build cool systems!

❖ Tomorrow’s Lecture: Future Classes, Course Thanks, and
AMA!

25

