W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Concurrency: Processes
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
lan Hsiao Allen Jung Sylvia Wang

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

About how long did Exercise 17 take?

"moowR

1-2 Hours
2-3 Hours
3-4 Hours
4+ Hours
| didn’t submit / | prefer not to say

Side question:
What'’s your favourite
CSE course so far?

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Administrivia

%+ hw4 due Thursday (8/20)
= Submissions accepted until Sunday (8/23) @ 11:59 pm

= |f you want to use late day(s), you MUST let staff know. Make a
private post on ed or send an email to staff letting us know you
want to use late day(s).

» Course evaluations!

= Please fill them out. They help staff members improve our skills as
educators and allow us to improve the course for future offerings.

©

» Grades for various assignments have been posted. PLEASE
CHECK THESE and contact staff if something seems
incorrect!!! 3

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Outline

\/
0’0

o0

searchserver

= Sequential

" Concurrent via forking threads —pthread create ()
= Concurrent via forking processes — fork ()

= Concurrent via non-blocking, event-driven 1/0O — ()
« We won’t get to this ®

Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Review: Address Spaces

+» A process executes within an

Stack

address space SP== [
" |ncludes segments for different parts

of memory I
" Process tracks its current state using Shared Libraries

the stack pointer (SP) and program

counter (PC) I

Heap (malloc/free)
Read/Write Segment
.data, .bss

Read-Only Segment
PC=s .text, .rodata

0x00...00

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Creating New Processes

+« |p1d t fork();

" Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

- *Everything is cloned except threads. Sockets, file descriptors, virtual
address space, variables, etc.

" The new process has a separate virtual address space from the
parent

YW UNIVERSITY of WASHINGTON

fork () and Address Spaces

Fork causes the OS
to clone the
address space

" The copies of the
memory segments are
(nearly) identical

" The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

L24: Concurrency and Processes

Stack

SP=>

l
I

CSE333, Summer 2020

Stack

Shared Libraries

l
I

I

Shared Libraries

Heap (malloc/free)

I

Read/Write Segment
.data, .bss

Heap (malloc/free)

Read-Only Segment
.text, .rodata

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

PARENT

fork ()

CHILD

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Main Uses of fork ()

" Fork a child to handle some work

- Server forks to handle a new connection

« Web browser forks to render a new website

— Mainly for security purposes (separate address spaces)
" Fork a child that then exec’s a new program
- Shell forks and execs the program you want to run

- 333 grading script forks and execs your executable

— Using Python subprocess

YA UNIVERSITY of WASHINGTON L24: Concurrency and Processes

fork ()

« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

= Both the parent and the child return
from fork

- Parent receives child’s pid
« Child receives a 0

CSE333, Summer 2020

YA UNIVERSITY of WASHINGTON L24: Concurrency and Processes

fork ()

« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

= Both the parent and the child return
from fork

- Parent receives child’s pid
« Child receives a 0

clone

CSE333, Summer 2020

10

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

fork ()

« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

= Both the parent and the child return
from fork

- Parent receives child’s pid child pid
» Child receives a 0

CSE 251 review:
+» See fork example.cc Whew a child process exits, i+
B Is a zombie until its parent
reaps It.

11

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Concurrent Server with Processes

+ The parent process blocks on accept (), waiting for a
new client to connect

" When a new connection arrives, the parent calls fork () to
create a child process

" The child process handles that new connection and exit ()’s
when the connection terminates

+» Remember that children become “zombies” after death
= Option A: Parentcallswait () to “reap” children
= QOption B: Use a double-fork trick

12

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Double-fork Trick

13

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Double-fork Trick

o
%
G
g

14

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Double-fork Trick

> fork () child

Rewminder:

Fork() copies the file descriptor
table from parent, <o the child
has cowmection +o the client too.

15

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Double-fork Trick

: > fork () grandchild

16

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Double-fork Trick

| client g B // Grandenild

i child exit ()’s/parentwait ()’s

whewn parent wait()’s
for child, the child will
be cleaned np

17

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Double-fork Trick

m parent closes its
client connection

18

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Double-fork Trick

19

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Double-fork Trick

:) fork () child

-

~< fork () grandchild
_ -l exit ()

20

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Double-fork Trick

21

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Double-fork Trick

l— .
+— 0

22

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

+» What will happen when one of the grandchildren
processes finishes?

Zombie until grandparent reaps
Zombie until init reaps
. ZOMBIE FOREVER!!!

We’re lost...

moO®mPp

23

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

+» What will happen when one of the grandchildren
processes finishes?

A. -

B. Zombie until grandparent reaps witlh wai+

@ Zombie until init reaps
D. ZOMBIE FOREVER!!!
E. We're lost... \ Double fork is done to

have process cleaned np
without waiting/blocking
program

24

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Concurrent with Processes Pseudocode

+ See searchserver processes/

[// Server set up)

while (1) {
sock fd = accept()
pid = fork();
1f (pid == 0) {
// ??? process

} else {
// ??? process

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Concurrent with Processes Pseudocode

+ See searchserver processes/

[// Server set up)

while (1) {
sock fd = accept()
pid = fork();
1f (pid == 0) {
// Child process

} else {
// Parent process

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Concurrent with Processes Pseudocode

+ See searchserver processes/

[// Server set up)

while (1) {
sock fd = accept()

pid = fork();

if (pid == 0) {
// Child process
pid = fork();
if (pid == 0) {

// ??? process

} else {
// Parent process

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Concurrent with Processes Pseudocode

+ See searchserver processes/

[// Server set up)

while (1) {
sock fd = accept()
pid = fork();
if (pid == 0) f{
// Child process
pid = fork();
if (pid == 0) f{
// Grand-child process
HandleClient (sock fd, ...);

}

} else {
// Parent process

CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON L24: Concurrency and Processes

Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {
sock fd = accept()

pid = fork();

if (pid == 0) {
// Child process
pid = fork();
if (pid == 0) {

// Grand-child process
HandleClient (sock fd, ...);
}
// Clean up resources...
exit();
} else {
// Parent process

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Concurrent with Processes Pseudocode

+ See searchserver processes/

7

// Server set up
while (1) {
sock fd = accept()
pid = fork();
if (pid == 0) {
// Child process
pid = fork();
if (pid == 0) {
// Grand-child process
HandleClient (sock fd, ...);
}
// Clean up resources...
exit();
} else {
// Parent process
// Wait for child to immediately die
wait () ;

close(sock £d): Zrandehild has copy of
socket, we can close our copy

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Why Concurrent Processes?

+» Advantages:
" No shared memory between processes
" No need for language support; OS provides “fork”
= Concurrent execution leads to better CPU, network utilization

+ Disadvantages:

@' Processes are heavyweight
- Relatively slow to fork
- Context switching latency is high

= Communication between processes is complicated

32

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

How Fast is fork () ?

+» See forklatency.cc

+ ~ 0.5 milliseconds per fork*
= . maximum of (1000/0.5) = 2,000 connections/sec/core
= ~175 million connections/day/core

« This is fine for most servers

- Too slow for super-high-traffic front-line web services

— Facebook served ~ 750 billion page views per day in 2013
Would need 3-6k cores just to handle fork (), i.e. without doing any work
for each connection

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ...

33

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

How Fastis pthread create()?

D)

» See threadlatency.cc

L)

+» ~0.05 milliseconds per thread creation*
= ~10x faster than fork ()
= . maximum of (1000/0.05) = 20,000 connections/sec/core
= ~2 billion connections/day/core

+ Mush faster, but writing safe multithreaded code can be
serious voodoo

*Past measurements are not indicative of future performance — depends on hardware, OS,
software versions, ..., but will typically be an order of magnitude faster than fork()

34

W UNIVERSITY of WASHINGTON L24: Concurrency and Processes CSE333, Summer 2020

Aside: Thread Pools

+ In real servers, we’d like to avoid overhead needed to
create a new thread or process for every request

" We wrote a Thread Pool implementation for you in HW4

+ |dea: Thread Pools:
= Create a fixed set of worker threads when the server starts
" When a request arrives, add it to a queue of tasks (using locks)
" Each thread tries to remove a task from the queue (using locks)

" When a thread is finished with one task, it tries to get a new task
from the queue (using locks)

35

