
CSE333, Summer 2020L24: Concurrency and Processes

Concurrency: Processes
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
Ian Hsiao Allen Jung Sylvia Wang

CSE333, Summer 2020L24: Concurrency and Processes

2

pollev.com/cse33320su

About how long did Exercise 17 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I didn’t submit / I prefer not to say

Side question:
What’s your favourite
CSE course so far?

CSE333, Summer 2020L24: Concurrency and Processes

Administrivia

❖ hw4 due Thursday (8/20)

▪ Submissions accepted until Sunday (8/23) @ 11:59 pm

▪ If you want to use late day(s), you MUST let staff know. Make a
private post on ed or send an email to staff letting us know you
want to use late day(s).

❖ Course evaluations!

▪ Please fill them out. They help staff members improve our skills as
educators and allow us to improve the course for future offerings.
☺

❖ Grades for various assignments have been posted. PLEASE
CHECK THESE and contact staff if something seems
incorrect!!! 3

CSE333, Summer 2020L24: Concurrency and Processes

Outline

❖ searchserver

▪ Sequential

▪ Concurrent via forking threads – pthread_create()

▪ Concurrent via forking processes – fork()

▪

•

❖ Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

4

CSE333, Summer 2020L24: Concurrency and Processes

Review: Address Spaces

❖ A process executes within an
address space

▪ Includes segments for different parts
of memory

▪ Process tracks its current state using
the stack pointer (SP) and program
counter (PC)

5

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

CSE333, Summer 2020L24: Concurrency and Processes

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

• *Everything is cloned except threads. Sockets, file descriptors, virtual
address space, variables, etc.

▪ The new process has a separate virtual address space from the
parent

6

pid_t fork();

CSE333, Summer 2020L24: Concurrency and Processes

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

7

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

CSE333, Summer 2020L24: Concurrency and Processes

Main Uses of fork()

▪ Fork a child to handle some work

• Server forks to handle a new connection

• Web browser forks to render a new website

– Mainly for security purposes (separate address spaces)

▪ Fork a child that then exec’s a new program

• Shell forks and execs the program you want to run

• 333 grading script forks and execs your executable

– Using Python subprocess

8

CSE333, Summer 2020L24: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

9

parent

OS

fork()

CSE333, Summer 2020L24: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

10

parent child

OS

clone

CSE333, Summer 2020L24: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

❖ See fork_example.cc

11

parent child

OS

child pid 0

CSE 351 review:

When a child process exits, it

is a zombie until its parent

reaps it.

CSE333, Summer 2020L24: Concurrency and Processes

Concurrent Server with Processes

❖ The parent process blocks on accept(), waiting for a
new client to connect
▪ When a new connection arrives, the parent calls fork() to

create a child process

▪ The child process handles that new connection and exit()’s
when the connection terminates

❖ Remember that children become “zombies” after death
▪ Option A: Parent calls wait() to “reap” children

▪ Option B: Use a double-fork trick

12

CSE333, Summer 2020L24: Concurrency and Processes

Double-fork Trick

13

server

CSE333, Summer 2020L24: Concurrency and Processes

Double-fork Trick

14

client

server accept()

CSE333, Summer 2020L24: Concurrency and Processes

Double-fork Trick

15

client

server

server
fork() child

Reminder:

Fork() copies the file descriptor

table from parent, so the child

has connection to the client too.

CSE333, Summer 2020L24: Concurrency and Processes

Double-fork Trick

16

client server

server

server

fork() grandchild

CSE333, Summer 2020L24: Concurrency and Processes

Double-fork Trick

17

client server

server

child exit()’s / parent wait()’s

// Grandchild

child

When parent wait()’s

for child, the child will

be cleaned up

CSE333, Summer 2020L24: Concurrency and Processes

Double-fork Trick

18

client server

server
parent closes its
client connection

CSE333, Summer 2020L24: Concurrency and Processes

Double-fork Trick

19

client server

server

CSE333, Summer 2020L24: Concurrency and Processes

Double-fork Trick

20

client server

server

server

server

client

fork() grandchild
exit()

fork() child

CSE333, Summer 2020L24: Concurrency and Processes

Double-fork Trick

21

client server

client server

server

CSE333, Summer 2020L24: Concurrency and Processes

Double-fork Trick

22

client server

client server

client server

client server

client server

client server

client server

client server

client server

server

CSE333, Summer 2020L24: Concurrency and Processes

Review Question

❖ What will happen when one of the grandchildren
processes finishes?

A. Zombie until grandparent exits

B. Zombie until grandparent reaps

C. Zombie until init reaps

D. ZOMBIE FOREVER!!!

E. We’re lost…

23

pollev.com/cse33320su

CSE333, Summer 2020L24: Concurrency and Processes

Review Question

❖ What will happen when one of the grandchildren
processes finishes?

A. Zombie until grandparent exits

B. Zombie until grandparent reaps

C. Zombie until init reaps

D. ZOMBIE FOREVER!!!

E. We’re lost…

24

pollev.com/cse33320su

with wait

Double fork is done to

have process cleaned up

without waiting/blocking

program

CSE333, Summer 2020L24: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

25

... // Server set up

while (1) {

sock_fd = accept();

pid = fork();

if (pid == 0) {

// ??? process

} else {

// ??? process

}

}

CSE333, Summer 2020L24: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

26

... // Server set up

while (1) {

sock_fd = accept();

pid = fork();

if (pid == 0) {

// Child process

} else {

// Parent process

}

}

CSE333, Summer 2020L24: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

27

... // Server set up

while (1) {

sock_fd = accept();

pid = fork();

if (pid == 0) {

// Child process

pid = fork();

if (pid == 0) {

// ??? process

}

} else {

// Parent process

}

}

CSE333, Summer 2020L24: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

28

... // Server set up

while (1) {

sock_fd = accept();

pid = fork();

if (pid == 0) {

// Child process

pid = fork();

if (pid == 0) {

// Grand-child process

HandleClient(sock_fd, ...);

}

} else {

// Parent process

}

}

CSE333, Summer 2020L24: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

29

... // Server set up

while (1) {

sock_fd = accept();

pid = fork();

if (pid == 0) {

// Child process

pid = fork();

if (pid == 0) {

// Grand-child process

HandleClient(sock_fd, ...);

}

// Clean up resources...

exit();

} else {

// Parent process

}

}

CSE333, Summer 2020L24: Concurrency and Processes

Concurrent with Processes Pseudocode

❖ See searchserver_processes/

30

... // Server set up

while (1) {

sock_fd = accept();

pid = fork();

if (pid == 0) {

// Child process

pid = fork();

if (pid == 0) {

// Grand-child process

HandleClient(sock_fd, ...);

}

// Clean up resources...

exit();

} else {

// Parent process

// Wait for child to immediately die

wait();

close(sock_fd);

}

}

Grandchild has copy of

socket, we can close our copy

CSE333, Summer 2020L24: Concurrency and Processes

Why Concurrent Processes?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Concurrent execution leads to better CPU, network utilization

❖ Disadvantages:

▪ Processes are heavyweight

• Relatively slow to fork

• Context switching latency is high

▪ Communication between processes is complicated

32

CSE333, Summer 2020L24: Concurrency and Processes

How Fast is fork()?

❖ See forklatency.cc

❖ ~ 0.5 milliseconds per fork*

▪ ∴ maximum of (1000/0.5) = 2,000 connections/sec/core

▪ ~175 million connections/day/core

• This is fine for most servers

• Too slow for super-high-traffic front-line web services

– Facebook served ~ 750 billion page views per day in 2013!
Would need 3-6k cores just to handle fork(), i.e. without doing any work
for each connection

❖ *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …

33

CSE333, Summer 2020L24: Concurrency and Processes

How Fast is pthread_create()?

❖ See threadlatency.cc

❖ ~0.05 milliseconds per thread creation*
▪ ~10x faster than fork()

▪ ∴ maximum of (1000/0.05) = 20,000 connections/sec/core

▪ ~2 billion connections/day/core

❖ Mush faster, but writing safe multithreaded code can be
serious voodoo

❖ *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …, but will typically be an order of magnitude faster than fork()

34

CSE333, Summer 2020L24: Concurrency and Processes

Aside: Thread Pools

❖ In real servers, we’d like to avoid overhead needed to
create a new thread or process for every request

▪ We wrote a Thread Pool implementation for you in HW4

❖ Idea: Thread Pools:

▪ Create a fixed set of worker threads when the server starts

▪ When a request arrives, add it to a queue of tasks (using locks)

▪ Each thread tries to remove a task from the queue (using locks)

▪ When a thread is finished with one task, it tries to get a new task
from the queue (using locks)

35

