
CSE333, Summer 2020L24: Concurrency and Processes

Creating New Processes

 Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)
• *Everything is cloned except threads. Sockets, file descriptors, virtual

address space, variables, etc.

 The new process has a separate virtual address space from the
parent

6

pid_t fork();

CSE333, Summer 2020L24: Concurrency and Processes

fork()

 fork() has peculiar semantics
 The parent invokes fork()
 The OS clones the parent
 Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

 See fork_example.cc

11

parent child

OS

child pid 0

CSE 351 review:
When a child process exits, it
is a zombie until its parent
reaps it.

CSE333, Summer 2020L24: Concurrency and Processes

Review Question

 What will happen when one of the grandchildren
processes finishes?

A. Zombie until grandparent exits
B. Zombie until grandparent reaps
C. Zombie until init reaps
D. ZOMBIE FOREVER!!!
E. We’re lost…

23

pollev.com/cse33320su

CSE333, Summer 2020L24: Concurrency and Processes

Why Concurrent Processes?

 Advantages:
 No shared memory between processes
 No need for language support; OS provides “fork”
 Concurrent execution leads to better CPU, network utilization

 Disadvantages:
 Processes are heavyweight

• Relatively slow to fork
• Context switching latency is high

 Communication between processes is complicated

32

6 11

23 32

