
CSE333, Summer 2020L23: Concurrency and Threads

Concurrency: Threads
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
Ian Hsiao Allen Jung Sylvia Wang

CSE333, Summer 2020L23: Concurrency and Threads

2

pollev.com/cse33320su

About how long did Exercise 16 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I didn’t submit / I prefer not to say

Side question:
Favourite breakfast food?

CSE333, Summer 2020L23: Concurrency and Threads

Administrivia

❖ Exercise 17 released today, due Monday (8/17)

▪ Concurrency via pthreads

❖ hw4 due Thursday (8/20)

▪ Submissions accepted until Sunday (8/23) @ 11:59 pm

▪ If you want to use late day(s), you MUST let staff know. Make a
private post on ed or send an email to staff letting us know you
want to use late day(s).

❖ Remaining late days posted on canvas. Grades for various
assignments will also be posted soon.

▪ Please Contact staff if something seems incorrect!!!

3

CSE333, Summer 2020L23: Concurrency and Threads

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

❖

▪ Equivalent of exit(retval); for a thread instead of a process

▪ The thread will automatically exit once it returns from
start_routine()

4

int pthread_create(

pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*),

void* arg);

void pthread_exit(void* retval);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CSE333, Summer 2020L23: Concurrency and Threads

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

❖

▪ Mark thread specified by thread as detached – it will clean up
its resources as soon as it terminates

5

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

Detach a thread.

Thread is cleaned up when it is

finished

continues

parentcreate detach

start_routine
x

CSE333, Summer 2020L23: Concurrency and Threads

Concurrent Server with Threads

❖ A single process handles all of the connections, but a
parent thread dispatches (creates) a new thread to handle
each connection

▪ The child thread handles the new connection and then exits when
the connection terminates

❖ See searchserver_threads/ for code if curious

6

CSE333, Summer 2020L23: Concurrency and Threads

Multithreaded Server

7

client

server

accept()

CSE333, Summer 2020L23: Concurrency and Threads

Multithreaded Server

8

client

server

pthread_create()

pthread_detach()

CSE333, Summer 2020L23: Concurrency and Threads

Multithreaded Server

9

client

server

accept()

client

CSE333, Summer 2020L23: Concurrency and Threads

Multithreaded Server

10

client

client

server

pthread_create()

CSE333, Summer 2020L23: Concurrency and Threads

Multithreaded Server

11

client

client

client

client

client

client
server

shared
data

structures

CSE333, Summer 2020L23: Concurrency and Threads

Thread Examples

❖ See cthread.c

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

❖ See exit_thread.c

▪ Do we need to join every thread we create?

❖ See pthread.cc

▪ More instructions per thread = higher likelihood of interleaving

12

CSE333, Summer 2020L23: Concurrency and Threads

Why Concurrent Threads?

❖ Advantages:

▪ Almost as simple to code as sequential

• In fact, most of the code is identical! (but a bit more complicated to
dispatch a thread)

▪ Concurrent execution with good CPU and network utilization

• Some overhead, but less than processes

▪ Shared-memory communication is possible

❖ Disadvantages:

▪ Synchronization is complicated

▪ Shared fate within a process

• One “rogue” thread can hurt you badly

13

CSE333, Summer 2020L23: Concurrency and Threads

Data Races

❖ Two memory accesses form a data race if different
threads access the same location, and at least one is a
write, and they occur one after another

▪ Means that the result of a program can vary depending on chance
(which thread ran first?)

14

CSE333, Summer 2020L23: Concurrency and Threads

Data Race Example

❖ If your fridge has no milk,
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

15

if (!milk) {

buy milk

}

! !

CSE333, Summer 2020L23: Concurrency and Threads

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

16

if (!note) {

if (!milk) {

leave note

buy milk

remove note

}

}

pollev.com/cse33320su

CSE333, Summer 2020L23: Concurrency and Threads

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

17

if (!note) {

if (!milk) {

leave note

buy milk

remove note

}

}

pollev.com/cse33320su

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other

possible scenarios

that result in

multiple milks

We can be interrupted

between checking note and

leaving note 

CSE333, Summer 2020L23: Concurrency and Threads

Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways,
depending on the specifics of the data structure

❖ Example: two threads try to read from and write to the
same shared memory location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head
of the linked list at the same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure! 
18

CSE333, Summer 2020L23: Concurrency and Threads

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented
(see CSE 451)

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

19

CSE333, Summer 2020L23: Concurrency and Threads

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

20

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle
if locked

❖ Pseudocode:

CSE333, Summer 2020L23: Concurrency and Threads

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

21

fridge.lock()

if (!milk) {

buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

buy milk

}

milk_lock.unlock()

CSE333, Summer 2020L23: Concurrency and Threads

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

22

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CSE333, Summer 2020L23: Concurrency and Threads

pthread Mutex Examples

❖ See total.cc

▪ Data race between threads

❖ See total_locking.cc

▪ Adding a mutex fixes our data race

❖ How does this compare to sequential code?

▪ Likely slower – only 1 thread can increment at a time, but have to
deal with checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then
adds its value (once!) to the shared variable at the end

23

CSE333, Summer 2020L23: Concurrency and Threads

C++11 Threads

❖ C++11 added threads and concurrency to its libraries
▪ <thread> – thread objects

▪ <mutex> – locks to handle critical sections

▪ <condition_variable> – used to block objects until
notified to resume

▪ <atomic> – indivisible, atomic operations

▪ <future> – asynchronous access to data

▪ These might be built on top of <pthread.h>, but also might
not be

❖ Definitely use in C++11 code if local conventions allow,
but pthreads will be around for a long, long time

▪ Use pthreads in current exercise
25

