
CSE333, Summer 2020L23: Concurrency and Threads



 Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

 Returns 0 on success and an error number on error (can check
against error constants)

 The new thread runs start_routine(arg)



 Equivalent of exit(retval); for a thread instead of a process
 The thread will automatically exit once it returns from
start_routine()

Creating and Terminating Threads

4

int pthread_create(
pthread_t* thread,
const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg);

void pthread_exit(void* retval);

CSE333, Summer 2020L23: Concurrency and Threads

What To Do After Forking Threads?



 Waits for the thread specified by thread to terminate
 The thread equivalent of waitpid()
 The exit status of the terminated thread is placed in **retval



 Mark thread specified by thread as detached – it will clean up
its resources as soon as it terminates

5

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread, void** retval);

CSE333, Summer 2020L23: Concurrency and Threads

Data Race Example

 Idea: leave a note!
 Does this fix the problem?

A. Yes, problem fixed
B. No, could end up with no milk
C. No, could still buy multiple milk
D. We’re lost…

16

if (!note) {
if (!milk) {

leave note
buy milk
remove note

}
}

pollev.com/cse33320su

CSE333, Summer 2020L23: Concurrency and Threads

pthreads and Locks

 Another term for a lock is a mutex (“mutual exclusion”)
 pthread.h defines datatype pthread_mutex_t

 pthread_mutex_init()

 Initializes a mutex with specified attributes

 pthread_mutex_lock()
 Acquire the lock – blocks if already locked

 pthread_mutex_unlock()
 Releases the lock



 “Uninitializes” a mutex – clean up when done
22

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,
const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

4 5

16 22

