
CSE333, Summer 2020L23: Concurrency and Threads

 Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

 Returns 0 on success and an error number on error (can check
against error constants)

 The new thread runs start_routine(arg)

 Equivalent of exit(retval); for a thread instead of a process
 The thread will automatically exit once it returns from
start_routine()

Creating and Terminating Threads

4

int pthread_create(
pthread_t* thread,
const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg);

void pthread_exit(void* retval);

CSE333, Summer 2020L23: Concurrency and Threads

What To Do After Forking Threads?

 Waits for the thread specified by thread to terminate
 The thread equivalent of waitpid()
 The exit status of the terminated thread is placed in **retval

 Mark thread specified by thread as detached – it will clean up
its resources as soon as it terminates

5

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread, void** retval);

CSE333, Summer 2020L23: Concurrency and Threads

Data Race Example

 Idea: leave a note!
 Does this fix the problem?

A. Yes, problem fixed
B. No, could end up with no milk
C. No, could still buy multiple milk
D. We’re lost…

16

if (!note) {
if (!milk) {

leave note
buy milk
remove note

}
}

pollev.com/cse33320su

CSE333, Summer 2020L23: Concurrency and Threads

pthreads and Locks

 Another term for a lock is a mutex (“mutual exclusion”)
 pthread.h defines datatype pthread_mutex_t

 pthread_mutex_init()

 Initializes a mutex with specified attributes

 pthread_mutex_lock()
 Acquire the lock – blocks if already locked

 pthread_mutex_unlock()
 Releases the lock

 “Uninitializes” a mutex – clean up when done
22

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,
const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

4 5

16 22

