W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Concurrency: Intro and Threads
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
lan Hsiao Allen Jung Sylvia Wang

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

How far are you in HW4?

mmooO®mPp

I’m past ServerSocket

I’m working on ServerSocket right now

| have read the spec and some of the code
| haven’t looked at it yet

| didn’t submit / | prefer not to say

Side question:
Favourite CSE 333 topic so far?

YW UNIVERSITY of WASHINGTON L22: Intro to Concurrency

Administrivia

» Exercise 16 due date pushed back to Friday (08/14)

= Useful for understanding how to do ServerSocket in HW4

» HW4 due two Thursdays from now (08/20)

" You can use two late days on HW4.

» Exercise 17 to be released Friday.
= Due Monday 8/17 @ 10:30 am
= & The Last Exercise &»

CSE333, Summer 2020

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Some Common HW4 Bugs

+ Your server works, but is really, really slow
" Check the 2"¥ argument to the QueryProcessor constructor

+ Funny things happen after the first request

= Make sure you’re not destroying the HTTPConnection object
too early (e.g. falling out of scope in a while loop)

+ Server crashes on a blank request

= Make sure that you handle the case that read () (or
WrappedRead ()) returns O

YW UNIVERSITY of WASHINGTON L22: Intro to Concurrency

Lecture Outline

+» From Query Processing to a Search Server
+ Intro to Concurrency

+» Threads and other concurrency methods

+ Search Server with pthreads

CSE333, Summer 2020

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Building a Web Search Engine

+ We have:

= A web index
- A map from <word> to <list of documents containing the word>
- This is probably sharded over multiple files
" A query processor
- Accepts a query composed of multiple words
- Looks up each word in the index
- Merges the result from each word into an overall result set

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Search Engine Architecture

index
file
index query ,
. > client
file processor
index

file

YW UNIVERSITY of WASHINGTON

L22: Intro to Concurrency

Search Engine (Pseudocode)

CSE333, Summer 2020

(doclist Lookup (string word) {

bucket = hash (word);

hitlist = file.read (bucket); «——PDisk T/O
foreach hit in hitlist { ‘/’

doclist.append(file.read(hit));
}

return doclist;

}

main () {

SetupServerToReceiveConnections () ;
while (1) {

string query words[] = GetNextQuery (); +—Network

results = Lookup (query words[0]); IJC)
foreach word in query[l..n] {
results =

results.intersect (Lookup (word)) ;

}

Display (results); «—Network

} } T/O

CSE333, Summer 2020

L22: Intro to Concurrency

=
O
T.
)
z.
T
v
<
=
S
=
v
o
[S&]
=
=z,
=)

: @ Multi-Word Query

Execution Timeline

Avmumsmwwauww

O/I YIomisu

() AetdsTa

dO
() 30®sa=L3uUuT - S]1TNsSaI

O/I STP

() dnyoo

do
() 30®sa=L3uUuT " S]1TNsSaI

O/I STP

() dnyjoorT

O/I ASTP

() dnyoor

O/I 3Iomisu

() AxzondaxsN3I=®D
() uteuw

query

YW UNIVERSITY of WASHINGTON L22: Intro to Concurrency

What About I/O-caused Latency?

CSE333, Summer 2020

+ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

+

Numbers Everyone Should Know
L1l cache reference OIS In'S
Branch mispredict Sllints
L2 cache reference 7 ns
Mutex lock/unlock LI gl
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory i VR (010 o=
Round trip within same datacenter S ORORINnts
Disk seek 1L0) - (000 - @00 @E
= Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA ILS(0) 4 @005 OX0) S
Google -

10

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Execution Timeline: To Scale

Model isw't perfect:
Techmically also some cpu usane to setup I/O.
Network ontput also (probably) won't block program ...

@) @)
~ ~
@) O @)
= < NG NG =
v — — — ﬁ
“ e 0o
LY LY LS
g 0 0 0 CBD
5 — - — 5
0 e e e 0
— - <
o
.
(v}
£
______________________________ >
time

11

YA UNIVERSITY of WASHINGTON L22: Intro to Concurrency

Multiple (Single-Word) Queries

is the Query Number
#.a-> GetNextQuery ()

#.b -> network 1/0

#.c ->Lookup () & file.read()
#.d -> Disk I/O
#H.e->Intersect ()
& Display ()

query 1

CSE333, Summer 2020

query 3

12

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Multiple Queries: To Scale

13

YA UNIVERSITY of WASHINGTON

L22: Intro to Concurrency

CSE333, Summer 2020

Uh-Oh (1 of 2)

index
file

index
file

index
file

N
~

query

processor

client

client

client

client

client

14

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Uh-Oh (2 of 2)

Only one I/O request at
The CPU is idle most a time is “in flight”

of the time! /

(picture not to scale)

Queries don’t run until
earlier queries finish

query 1

15

CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON L22: Intro to Concurrency

Sequential Can Be Inefficient

+» Only one query is being processed at a time
= All other queries queue up behind the first one
= And clients queue up behind the queries ...

>

+» Even while processing one query, the CPU is idle the vast
majority of the time

" |tis blocked waiting for /O to complete
- Disk I/O can be very, very slow (10 million times slower ...)

L)

+ At most one I/O operation is in flight at a time

= Missed opportunities to speed I/O up
- Separate devices in parallel, better scheduling of a single device, etc.

16

YW UNIVERSITY of WASHINGTON L22: Intro to Concurrency

Lecture Outline

+» From Query Processing to a Search Server
<« Intro to Concurrency

+» Concurrent Programming Styles

+» Threads

+ Search Server with pthreads

CSE333, Summer 2020

17

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Concurrency

« Our search engine could run concurrently:

= Example: Execute queries one at a time, but issue I/O requests
against different files/disks simultaneously

- Could read from several index files at once, processing the 1/0 results
as they arrive

= Example: Our web server could execute multiple queries at the
same time

- While one is waiting for 1/0O, another can be executing on the CPU

+ Concurrency != parallelism
= Concurrency is doing multiple tasks at a time
= Parallelism is executing multiple CPU instructions simultaneously

18

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

A Concurrent Implementation

+» Use multiple “workers”

= As a query arrives, create a new “worker” to handle it

- The “worker” reads the query from the network, issues read requests
against files, assembles results and writes to the network

- The “worker” uses blocking I/0; the “worker” alternates between
consuming CPU cycles and blocking on I/O

= The OS context switches between “workers”
« While one is blocked on I/O, another can use the CPU

12

- Multiple “workers’ 1/0O requests can be issued at once

«» So what should we use for our “workers”?

19

YW UNIVERSITY of WASHINGTON L22: Intro to Concurrency

Lecture Outline

+» From Query Processing to a Search Server
+ Intro to Concurrency

+» Threads and other concurrency methods
+ Search Server with pthreads

CSE333, Summer 2020

20

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Review: Processes

+» The components of a “process” are:
= Resources such as file descriptors and sockets
= An address space (page tables, ect.)

+ Different Processes have independent components:

" Most importantly: Isolated address spaces.

+ An address space of a process can hold stack(s) that
distinguish different “threads” of execution

21

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Introducing Threads

+ Separate the concept of a process from the “thread of
execution”

" Threads are contained within a process

= Usually called a thread, this is a sequential execution stream
within a process

— thread

« In most modern OS’s:

" Threads are the unit of scheduling.

22

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Multi-threaded Search Engine (Pseudocode)

(main() { N
while (1) {
string query words[] = GetNextQuery ()
— CreateThread (ProcessQuery (query words)) ;
) All we did was put the code into a function,
} oand create a thread that invokes i+

.

[doclist Lookup (string word) {
bucket = hash (word);
hitlist = file.read(bucket);
foreach hit in hitlist
doclist.append(file.read (hit));
return doclist;

}

ProcessQuery (string query words[]) {
results = Lookup (query words[0]);
foreach word in query[l..n]
results = results.intersect (Lookup (word)) ;

Display (results);
}

23

CSE333, Summer 2020

L22: Intro to Concurrency

YA UNIVERSITY of WASHINGTON

Multi-threaded Search Engine (Execution)
Ruwvming with 1 CPU

query 2

Note how only one thread
uses any specific resource
ot a time

The OS schedules all of
this for us ©

query 1

24

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Why Threads?

+» Advantages:
" You (mostly) write sequential-looking code
" Threads can run in parallel if you have multiple CPUs/cores

+ Disadvantages:

<§7If threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug
" Threads can introduce overhead

- Lock contention, context switch overhead, and other issues

"= Need language support for threads

25

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources,
& security attributes

= A Thread has a unique: stack, stack pointer, program counter,
& registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

26

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Threads vs. Processes

pthread create()

27

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Threads vs. Processes

Stack

!

parent

I I !

Shared Libraries fork () Shared Libraries Shared Libraries
Heap (malloc/free) Heap (malloc/free) Heap (malloc/free)
Read/Write Segments Read/Write Segments | | Read/Write Segments
.data, .bss .data, .bss .data, .bss
Read-Only Segments Read-Only Segments Read-Only Segments

.text, .rodata .text, .rodata .text, .rodata

28

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Alternative: Processes

+» What if we forked processes instead of threads?

+» Advantages:
" No shared memory between processes
"= No need for language support; OS provides “fork”
" Processes are isolated. If one crashes, other processes keep going

+ Disadvantages:

" More overhead than threads during creation and context
switching

= Cannot easily share memory between processes — typically
communicate through the file system

29

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Alternate: Different 1/0 Handling

» Use asynchronous or non-blocking 1/0

» Your program begins processing a query

"= When your program needs to read data to make further progress,
it registers interest in the data with the OS and then switches to a
different query

" The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

" When data becomes available, the OS lets your program know

- Your program (almost never) blocks on I/O

30

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Non-blocking 1/0

+ Reading from the network can truly block your program

= Remote computer may wait arbitrarily long before sending data

+» Non-blocking I/0 (network, console)
= Your program enables non-blocking 1/O on its file descriptors
" Your program issues read () and write () system calls
- If the read/write would block, the system call returns immediately

" Program can ask the OS which file descriptors are
readable/writeable

- Program can choose to block while no file descriptors are ready

31

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

+ If | wanted to make a web browser, what concurrency
model should | use?

" Note that a web browser may need to request many resources
over the network and combine them together to load a page

A
B. Use threads
C

. Use processes
D. We'relost...

32

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

+ If | wanted to make a web browser, what concurrency
model should | use?

" Note that a web browser may need to request many resources
over the network and combine them together to load a page

Concurrency will make more efficient use

A. of time
Use threads we will need +o share the data we
C. Use processes request across “workers”

Y 4
D. We're lost... we want +o be fast

33

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Outline (next two lectures)

« We’ll look at different searchserver implementations

= Sequential
" Concurrent via dispatching threads — pthread create ()

" Concurrent via forking processes — fork ()

- Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

34

YW UNIVERSITY of WASHINGTON

Sequential

Pseudocode:

L22: Intro to Concurrency

listen fd = Listen (port);

while (1) {

client fd = accept(listen fd);
buf = read(client fd);
resp = ProcessQuery (buf);
write(client fd, resp):
close(client fd);

+ See searchserver sequential/

CSE333, Summer 2020

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Why Sequential?

+» Advantages:
= Super(?) simple to build/write

+ Disadvantages:

" |ncredibly poor performance
- One slow client will cause all others to block
- Poor utilization of resources (CPU, network, disk)

36

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Threads

+» Threads are like lightweight processes

" They execute concurrently like processes
- Multiple threads can run simultaneously on multiple CPUs/cores

= Unlike processes, threads cohabitate the same address space

- Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

— But, they can interfere with each other — need synchronization for shared
resources

- Each thread has its own stack

37

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Single-Threaded Address Spaces

_ + Before creating a thread

Stack

S e = 1Pafe"t " One thread of execution running
in the address space
- One PC, stack, SP
t " That main thread invokes a
Shared Libraries function to create a new thread
t - Typically pthread create ()

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
5 —n .text, .rodata

pakent

38

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

Multi-threaded Address Spaces

_ + After creating a thread

SP = StaCkparen: = Two threads of execution running
pate nt 1 _
in the address space
SR Staclkc"”d - Original thread (parent) and new
t thread (child)

Shared Libraries - New stack created for child thread

T « Child thread has its own values of
the PC and SP

Heap (malloc/free) = Both threads share the other
segments (code, heap, globals)

Read/Write Segments
.data, .bss

- They can cooperatively modify

PC oy = Read-Only Segments shared data

.text, .rodata
pakent

39

YW UNIVERSITY of WASHINGTON L22: Intro to Concurrency

Lecture Outline

+» From Query Processing to a Search Server
+ Intro to Concurrency
+» Threads

+» Search Server with pthreads

CSE333, Summer 2020

40

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

POSIX Threads (pthreads)

+» The POSIX APIs for dealing with threads

" Declaredinpthread.h
- Not part of the C/C++ language (cf. Java)

" To enable support for multithreading, must include —-pthread
flag when compiling and linking with gcc command

- gcc —g —-Wall —-std=cll —-pthread -0 main mailn.c

41

W UNIVERSITY of WASHINGTON L22: Intro to Concurrency CSE333, Summer 2020

0

Creating and Terminating Threads

Output parameter.
aives us a “thread descriptor”

[int pthread create (//)
pthread t* thread, Fuwction pointer!

const pthread attr t* attr, Takes & returus void*
void* (*start:routzne)(void*)r//*b“MW"Wm”wgwmc
vold* arg) ;< Argument for the thread fumctioy

\.

= Creates a new thread into *thread, with attributes *attr
(NULT means default attributes)

= Returns 0 on success and an error number on error (can check
against error constants)

" The new thread runs start routine (arg)

void pthread exit(void* retval);

" Equivalentof exit (retval) ; for athread instead of a process

" The thread will automatically exit once it returns from

start routine ()
a— 42

