
CSE333, Summer 2020L22: Intro to Concurrency

Concurrency: Intro and Threads
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
Ian Hsiao Allen Jung Sylvia Wang

CSE333, Summer 2020L22: Intro to Concurrency

2

pollev.com/cse33320su

How far are you in HW4?

A. I have passed the test_suite
B. I’m past ServerSocket
C. I’m working on ServerSocket right now
D. I have read the spec and some of the code
E. I haven’t looked at it yet
F. I didn’t submit / I prefer not to say

Side question:
Favourite CSE 333 topic so far?

CSE333, Summer 2020L22: Intro to Concurrency

Administrivia

❖ Exercise 16 due date pushed back to Friday (08/14)

▪ Useful for understanding how to do ServerSocket in HW4

❖ HW4 due two Thursdays from now (08/20)

▪ You can use two late days on HW4.

❖ Exercise 17 to be released Friday.

▪ Due Monday 8/17 @ 10:30 am

▪ 🎉 The Last Exercise 🎉

3

CSE333, Summer 2020L22: Intro to Concurrency

Some Common HW4 Bugs

❖ Your server works, but is really, really slow
▪ Check the 2nd argument to the QueryProcessor constructor

❖ Funny things happen after the first request
▪ Make sure you’re not destroying the HTTPConnection object

too early (e.g. falling out of scope in a while loop)

❖ Server crashes on a blank request
▪ Make sure that you handle the case that read() (or
WrappedRead()) returns 0

4

CSE333, Summer 2020L22: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Threads and other concurrency methods

❖ Search Server with pthreads

5

CSE333, Summer 2020L22: Intro to Concurrency

Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

6

CSE333, Summer 2020L22: Intro to Concurrency

Search Engine Architecture

7

query
processor

client
index

file

index
file

index
file

CSE333, Summer 2020L22: Intro to Concurrency

Search Engine (Pseudocode)

8

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

return doclist;

}

main() {

SetupServerToReceiveConnections();

while (1) {

string query_words[] = GetNextQuery();

results = Lookup(query_words[0]);

foreach word in query[1..n] {

results = results.intersect(Lookup(word));

}

Display(results);

}

}

Disk I/O

Network

I/O

Network

I/O

CSE333, Summer 2020L22: Intro to Concurrency

Execution Timeline: a Multi-Word Query

9

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CSE333, Summer 2020L22: Intro to Concurrency

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

10

CSE333, Summer 2020L22: Intro to Concurrency

Execution Timeline: To Scale

11

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

Model isn’t perfect:

Technically also some cpu usage to setup I/O.

Network output also (probably) won’t block program …..

CSE333, Summer 2020L22: Intro to Concurrency

Multiple (Single-Word) Queries

12

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

is the Query Number
#.a -> GetNextQuery()
#.b -> network I/O
#.c -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()

& Display()

CSE333, Summer 2020L22: Intro to Concurrency

Multiple Queries: To Scale

13

I
/
O

1
.
b

I
/
O

1
.
d

time

query 2

query 1

I
/
O

1
.
b

I
/
O

1
.
d

I
/
O

1
.
b

I
/
O

1
.
d

query 3

CSE333, Summer 2020L22: Intro to Concurrency

Uh-Oh (1 of 2)

14

query
processor

client

client

client

client

client

index
file

index
file

index
file

CSE333, Summer 2020L22: Intro to Concurrency

Uh-Oh (2 of 2)

15

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

CSE333, Summer 2020L22: Intro to Concurrency

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

16

CSE333, Summer 2020L22: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Concurrent Programming Styles

❖ Threads

❖ Search Server with pthreads

17

CSE333, Summer 2020L22: Intro to Concurrency

Concurrency

❖ Our search engine could run concurrently:

▪ Example: Execute queries one at a time, but issue I/O requests
against different files/disks simultaneously

• Could read from several index files at once, processing the I/O results
as they arrive

▪ Example: Our web server could execute multiple queries at the
same time

• While one is waiting for I/O, another can be executing on the CPU

❖ Concurrency != parallelism

▪ Concurrency is doing multiple tasks at a time

▪ Parallelism is executing multiple CPU instructions simultaneously

18

CSE333, Summer 2020L22: Intro to Concurrency

A Concurrent Implementation

❖ Use multiple “workers”

▪ As a query arrives, create a new “worker” to handle it

• The “worker” reads the query from the network, issues read requests
against files, assembles results and writes to the network

• The “worker” uses blocking I/O; the “worker” alternates between
consuming CPU cycles and blocking on I/O

▪ The OS context switches between “workers”

• While one is blocked on I/O, another can use the CPU

• Multiple “workers’” I/O requests can be issued at once

❖ So what should we use for our “workers”?

19

CSE333, Summer 2020L22: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Threads and other concurrency methods

❖ Search Server with pthreads

20

CSE333, Summer 2020L22: Intro to Concurrency

Review: Processes

❖ The components of a “process” are:

▪ Resources such as file descriptors and sockets

▪ An address space (page tables, ect.)

❖ Different Processes have independent components:

▪ Most importantly: Isolated address spaces.

❖ An address space of a process can hold stack(s) that
distinguish different “threads” of execution

21

CSE333, Summer 2020L22: Intro to Concurrency

Introducing Threads

❖ Separate the concept of a process from the “thread of
execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream
within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

22

thread

CSE333, Summer 2020L22: Intro to Concurrency

Multi-threaded Search Engine (Pseudocode)

23

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist

doclist.append(file.read(hit));

return doclist;

}

ProcessQuery(string query_words[]) {

results = Lookup(query_words[0]);

foreach word in query[1..n]

results = results.intersect(Lookup(word));

Display(results);

}

main() {

while (1) {

string query_words[] = GetNextQuery();

CreateThread(ProcessQuery(query_words));

}

}

All we did was put the code into a function,

and create a thread that invokes it

CSE333, Summer 2020L22: Intro to Concurrency

Multi-threaded Search Engine (Execution)

24

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

*Running with 1 CPU

Note how only one thread

uses any specific resource

at a time

The OS schedules all of

this for us ☺

CSE333, Summer 2020L22: Intro to Concurrency

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

25

CSE333, Summer 2020L22: Intro to Concurrency

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
& security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
& registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

26

CSE333, Summer 2020L22: Intro to Concurrency

Threads vs. Processes

27

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CSE333, Summer 2020L22: Intro to Concurrency

Threads vs. Processes

28

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CSE333, Summer 2020L22: Intro to Concurrency

Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context
switching

▪ Cannot easily share memory between processes – typically
communicate through the file system

29

CSE333, Summer 2020L22: Intro to Concurrency

Alternate: Different I/O Handling

❖ Use asynchronous or non-blocking I/O

❖ Your program begins processing a query

▪ When your program needs to read data to make further progress,
it registers interest in the data with the OS and then switches to a
different query

▪ The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

▪ When data becomes available, the OS lets your program know

❖ Your program (almost never) blocks on I/O

30

CSE333, Summer 2020L22: Intro to Concurrency

Non-blocking I/O

❖ Reading from the network can truly block your program

▪ Remote computer may wait arbitrarily long before sending data

❖ Non-blocking I/O (network, console)

▪ Your program enables non-blocking I/O on its file descriptors

▪ Your program issues read() and write() system calls

• If the read/write would block, the system call returns immediately

▪ Program can ask the OS which file descriptors are
readable/writeable

• Program can choose to block while no file descriptors are ready

31

CSE333, Summer 2020L22: Intro to Concurrency

❖ If I wanted to make a web browser, what concurrency
model should I use?

▪ Note that a web browser may need to request many resources
over the network and combine them together to load a page

32

pollev.com/cse33320su

A. Do it sequentially
B. Use threads
C. Use processes
D. We’re lost…

CSE333, Summer 2020L22: Intro to Concurrency

❖ If I wanted to make a web browser, what concurrency
model should I use?

▪ Note that a web browser may need to request many resources
over the network and combine them together to load a page

33

pollev.com/cse33320su

A. Do it sequentially
B. Use threads
C. Use processes
D. We’re lost…

Concurrency will make more efficient use

of time

We will need to share the data we

request across “workers”

We want to be fast

CSE333, Summer 2020L22: Intro to Concurrency

Outline (next two lectures)

❖ We’ll look at different searchserver implementations

▪ Sequential

▪ Concurrent via dispatching threads – pthread_create()

▪ Concurrent via forking processes – fork()

❖ Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

34

CSE333, Summer 2020L22: Intro to Concurrency

Sequential

❖ Pseudocode:

❖ See searchserver_sequential/

35

listen_fd = Listen(port);

while (1) {

client_fd = accept(listen_fd);

buf = read(client_fd);

resp = ProcessQuery(buf);

write(client_fd, resp);

close(client_fd);

}

CSE333, Summer 2020L22: Intro to Concurrency

Why Sequential?

❖ Advantages:

▪ Super(?) simple to build/write

❖ Disadvantages:

▪ Incredibly poor performance

• One slow client will cause all others to block

• Poor utilization of resources (CPU, network, disk)

36

CSE333, Summer 2020L22: Intro to Concurrency

Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

– But, they can interfere with each other – need synchronization for shared
resources

• Each thread has its own stack

37

CSE333, Summer 2020L22: Intro to Concurrency

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

38

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CSE333, Summer 2020L22: Intro to Concurrency

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

39

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CSE333, Summer 2020L22: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Intro to Concurrency

❖ Threads

❖ Search Server with pthreads

40

CSE333, Summer 2020L22: Intro to Concurrency

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language (cf. Java)

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• gcc –g –Wall –std=c11 –pthread –o main main.c

41

CSE333, Summer 2020L22: Intro to Concurrency

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

❖

▪ Equivalent of exit(retval); for a thread instead of a process

▪ The thread will automatically exit once it returns from
start_routine()

42

int pthread_create(

pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*),

void* arg);

void pthread_exit(void* retval);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

