
CSE333, Summer 2020L22: Intro to Concurrency

Uh-Oh (2 of 2)

15

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

CSE333, Summer 2020L22: Intro to Concurrency

Sequential Can Be Inefficient

 Only one query is being processed at a time
 All other queries queue up behind the first one
 And clients queue up behind the queries …

 Even while processing one query, the CPU is idle the vast
majority of the time
 It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

 At most one I/O operation is in flight at a time
 Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

16

CSE333, Summer 2020L22: Intro to Concurrency

Concurrency

 Our search engine could run concurrently:
 Example: Execute queries one at a time, but issue I/O requests

against different files/disks simultaneously
• Could read from several index files at once, processing the I/O results

as they arrive

 Example: Our web server could execute multiple queries at the
same time
• While one is waiting for I/O, another can be executing on the CPU

 Concurrency != parallelism
 Concurrency is doing multiple tasks at a time
 Parallelism is executing multiple CPU instructions simultaneously

18

CSE333, Summer 2020L22: Intro to Concurrency

Threads vs. Processes
 In most modern OS’s:
 A Process has a unique: address space, OS resources,

& security attributes

 A Thread has a unique: stack, stack pointer, program counter,
& registers

 Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

26

15 16

18 26

