
CSE 333 19wi 22-1

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 2: Creating a Socket

 Use the socket() system call

 Creating a socket doesn’t bind it to a local address or port yet
 Returns file descriptor or -1 on error

5

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {
int socket_fd = socket(AF_INET, SOCK_STREAM, 0);
if (socket_fd == -1) {

std::cerr << strerror(errno) << std::endl;
return EXIT_FAILURE;

}
close(socket_fd);
return EXIT_SUCCESS;

}

socket.cc

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 3: Connect to the Server

 The connect() system call establishes a connection to
a remote host


• sockfd: Socket file description from Step 2
• addr and addrlen: Usually from one of the address structures

returned by getaddrinfo in Step 1 (DNS lookup)
• Returns 0 on success and -1 on error

 connect() may take some time to return
 It is a blocking call by default
 The network stack within the OS will communicate with the

remote host to establish a TCP connection to it
• This involves ~2 round trips across the network

6

int connect(int sockfd, const struct sockaddr* addr,
socklen_t addrlen);

CSE333, Summer 2020L20: Client-side & Server-side Networking

 When we call write(), what data do we need to pass to
it when writing over the network?

A. Any data our application needs to send

B. All of the above + TCP info
(sequence number, port, …)

C. All of the above + IP info
(source & dest IP addresses…)

D. All of the above + Ethernet info
(source & dest MAC addresses)

E. We’re lost…
10

pollev.com/cse33320su

CSE333, Summer 2020L20: Client-side & Server-side Networking

Socket API: Server TCP Connection

 Pretty similar to clients, but with additional steps:
1) Figure out the IP address and port on which to listen
2) Create a socket
3) bind() the socket to the address(es) and port
4) Tell the socket to listen() for incoming clients
5) accept() a client connection
6) .read() and write() to that connection
7) close() the client socket

14

5 6

10 14

CSE 333 19wi 22-2

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 3: Bind the socket



 Looks nearly identical to connect()!
 Returns 0 on success, -1 on error

 Some specifics for addr:
 Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?
• POSIX systems can handle IPv4 clients via IPv6 

 Port: port in network byte order (htons() is handy)
 Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)

18

int bind(int sockfd, const struct sockaddr* addr,
socklen_t addrlen);

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 4: Listen for Incoming Clients



 Tells the OS that the socket is a listening socket that clients can
connect to

 backlog: maximum length of connection queue
• Gets truncated, if necessary, to defined constant SOMAXCONN
• The OS will refuse new connections once queue is full until server
accept()s them (removing them from the queue)

 Returns 0 on success, -1 on error

 Clients can start connecting to the socket as soon as listen()
returns
• Server can’t use a connection until you accept() it

19

int listen(int sockfd, int backlog);

18 19

