
CSE333, Summer 2020L20: Client-side & Server-side Networking

Client-side and Server-side
Networking
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
Ian Hsiao Allen Jung Sylvia Wang

CSE333, Summer 2020L20: Client-side & Server-side Networking

2

pollev.com/cse33320su

About how long did Homework 3 take?

A. 0-4 Hours
B. 4-8 Hours
C. 8-12 Hours
D. 12-16 Hours
E. 16-20 Hours
F. 20+ Hours
G. I didn’t submit / I prefer not to say

Side question:
Where are you right now?

CSE333, Summer 2020L20: Client-side & Server-side Networking

Administrivia

❖ Exercise 15 released yesterday, due Monday (8/10)

▪ Client-side programming

❖ Exercise 16 released today, due Wednesday (8/12)

▪ Server-side programming

❖ hw4 posted and files will be pushed to repos today

▪ Due last Thursday of quarter (8/20)

▪ Can still use 2 late days for hw4 (hard deadline of 8/23)

▪ Demo at end of lecture or next lecture

3

CSE333, Summer 2020L20: Client-side & Server-side Networking

Socket API: Client TCP Connection

❖ There are five steps:

1) Figure out the IP address and port to connect to

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

4

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 2: Creating a Socket

❖ Use the socket() system call

▪ Creating a socket doesn’t bind it to a local address or port yet

▪ Returns file descriptor or -1 on error

5

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <iostream>

int main(int argc, char** argv) {

int socket_fd = socket(AF_INET, SOCK_STREAM, 0);

if (socket_fd == -1) {

std::cerr << strerror(errno) << std::endl;

return EXIT_FAILURE;

}

close(socket_fd);

return EXIT_SUCCESS;

}

socket.cc

// check for error

// clean up

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 3: Connect to the Server

❖ The connect() system call establishes a connection to
a remote host

▪

• sockfd: Socket file description from Step 2

• addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

• Returns 0 on success and -1 on error

❖ connect() may take some time to return

▪ It is a blocking call by default

▪ The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

• This involves ~2 round trips across the network

6

int connect(int sockfd, const struct sockaddr* addr,

socklen_t addrlen);

result from socket()

result from getaddrinfo()

Waits on an event before returning

Performs a “Handshake”

With the server

CSE333, Summer 2020L20: Client-side & Server-side Networking

Connect Example

❖ See connect.cc

7

// Get an appropriate sockaddr structure.

struct sockaddr_storage addr;

size_t addrlen;

LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.

int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);

if (socket_fd == -1) {

cerr << "socket() failed: " << strerror(errno) << endl;

return EXIT_FAILURE;

}

// Connect the socket to the remote host.

int res = connect(socket_fd,

reinterpret_cast<sockaddr*>(&addr),

addrlen);

if (res == -1) {

cerr << "connect() failed: " << strerror(errno) << endl;

}

// Helper function that calls

// getaddrinfo()

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 4: read()

❖ If there is data that has already been received by the
network stack, then read will return immediately with it
▪ read() might return with less data than you asked for

❖ If there is no data waiting for you, by default read()
will block until something arrives

▪ How might this cause deadlock?

▪ Can read() return 0?

8

Yes, connection could close and 0 is returned

If both server and client try to read with no data sent

errno

==

EINTR

Return Value

0-1 > 0

read()

other

errno

==

count

<

count

You’re

done!

Keep

reading

Error msg,

exit

Try

again!

Closed connection

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 4: write()

❖ write() queues your data in a send buffer in the OS
and then returns

▪ The OS transmits the data over the network in the background

▪ When write() returns, the receiver probably has not yet
received the data!

❖ If there is no more space left in the send buffer, by default
write() will block

9

CSE333, Summer 2020L20: Client-side & Server-side Networking

❖ When we call write(), what data do we need to pass to
it when writing over the network?

A. Any data our application needs to send

B. All of the above + TCP info
(sequence number, port, …)

C. All of the above + IP info
(source & dest IP addresses…)

D. All of the above + Ethernet info
(source & dest MAC addresses)

E. We’re lost…
10

pollev.com/cse33320su

CSE333, Summer 2020L20: Client-side & Server-side Networking

❖ When we call write(), what data do we need to pass to
it when writing over the network?

A. Any data our application needs to send

B. All of the above + TCP info
(sequence number, port, …)

C. All of the above + IP info
(source & dest IP addresses…)

D. All of the above + Ethernet info
(source & dest MAC addresses)

E. We’re lost…
11

pollev.com/cse33320su

POSIX Sockets is an interface

for using the transport layer.

Information about transport

layer + below are abstracted

away & handled for us.

CSE333, Summer 2020L20: Client-side & Server-side Networking

Read/Write Example

❖ See sendreceive.cc

12

while (1) {

int wres = write(socket_fd, readbuf, res);

if (wres == 0) {

cerr << "socket closed prematurely" << endl;

close(socket_fd);

return EXIT_FAILURE;

}

if (wres == -1) {

if (errno == EINTR)

continue;

cerr << "socket write failure: " << strerror(errno) << endl;

close(socket_fd);

return EXIT_FAILURE;

}

break;

}

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 5: close()

❖

▪ Nothing special here – it’s the same function as with file I/O

▪ Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

13

int close(int fd);

CSE333, Summer 2020L20: Client-side & Server-side Networking

Socket API: Server TCP Connection

❖ Pretty similar to clients, but with additional steps:

1) Figure out the IP address and port on which to listen

2) Create a socket

3) bind() the socket to the address(es) and port

4) Tell the socket to listen() for incoming clients

5) accept() a client connection

6) .read() and write() to that connection

7) close() the client socket

14

Analogy: opening a (boba) shop!

Finding a

good location

Building the store

Advertising the store

Open shop!

Next customer in line, Please!

Transaction occurs

Customer leaves shop

or refuse service

CSE333, Summer 2020L20: Client-side & Server-side Networking

Servers

❖ Servers can have multiple IP addresses (“multihoming”)

▪ Usually have at least one externally-visible IP address, as well as a
local-only address (127.0.0.1)

❖ The goals of a server socket are different than a client
socket

▪ Want to bind the socket to a particular port of one or more IP
addresses of the server

▪ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the
correct server file descriptor

15

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 1: Figure out IP address(es) & Port

❖ Step 1: getaddrinfo() invocation may or may not be
needed (but we’ll use it)

▪ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation

• Even if the machine has a static IP address, don’t wire it into the code
– either look it up dynamically or use a configuration file

▪ Can request listen on all local IP addresses by passing NULL as
hostname and setting AI_PASSIVE in hints.ai_flags

• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

16

Common and hard to find bug

is forgetting to set this

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 2: Create a Socket

❖ Step 2: socket() call is same as before

▪ Can directly use constants or fields from result of
getaddrinfo()

▪ Recall that this just returns a file descriptor – IP address and port
are not associated with socket yet

17

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 3: Bind the socket

❖

▪ Looks nearly identical to connect()!

▪ Returns 0 on success, -1 on error

❖ Some specifics for addr:

▪ Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?

• POSIX systems can handle IPv4 clients via IPv6 ☺

▪ Port: port in network byte order (htons() is handy)

▪ Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)

18

int bind(int sockfd, const struct sockaddr* addr,

socklen_t addrlen);

We’ll just pass in results from

getaddrinfo() & socket()

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 4: Listen for Incoming Clients

❖

▪ Tells the OS that the socket is a listening socket that clients can
connect to

▪ backlog: maximum length of connection queue

• Gets truncated, if necessary, to defined constant SOMAXCONN

• The OS will refuse new connections once queue is full until server
accept()s them (removing them from the queue)

▪ Returns 0 on success, -1 on error

▪ Clients can start connecting to the socket as soon as listen()
returns

• Server can’t use a connection until you accept() it

19

int listen(int sockfd, int backlog);

CSE333, Summer 2020L20: Client-side & Server-side Networking

Example #1

❖ See server_bind_listen.cc

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections for
20 seconds

• Can connect to it using netcat (nc)

20

CSE333, Summer 2020L20: Client-side & Server-side Networking

Step 5: Accept a Client Connection

❖

▪ Returns an active, ready-to-use socket file descriptor connected
to a client (or -1 on error)

• sockfd must have been created, bound, and listening

• Pulls a queued connection or waits for an incoming one

▪ addr and addrlen are output parameters

• *addrlen should initially be set to sizeof(*addr), gets
overwritten with the size of the client address

• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address

– Use getnameinfo() to do a reverse DNS lookup on the client

21

int accept(int sockfd, struct sockaddr* addr,

socklen_t* addrlen);

CSE333, Summer 2020L20: Client-side & Server-side Networking

Example #2

❖ See server_accept_rw_close.cc

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

▪ Accepts connections as they come

▪ Echoes any data the client sends to it on stdout and also sends
it back to the client

22

CSE333, Summer 2020L20: Client-side & Server-side Networking

Something to Note

❖ Our server code is not concurrent

▪ Single thread of execution

▪ The thread blocks while waiting for the next connection

▪ The thread blocks waiting for the next message from the
connection

❖ A crowd of clients is, by nature, concurrent

▪ While our server is handling the next client, all other clients are
stuck waiting for it

23

CSE333, Summer 2020L20: Client-side & Server-side Networking

Extra Exercise #1

❖ Write a program that:
▪ Reads DNS names, one per line, from stdin

▪ Translates each name to one or more IP addresses

▪ Prints out each IP address to stdout, one per line

24

