
CSE333, Summer 2020L19: Sockets & DNS

Sockets & DNS
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
Ian Hsiao Allen Jung Sylvia Wang

CSE333, Summer 2020L19: Sockets & DNS

2

pollev.com/cse33320su

How is HW3 Looking?

A. I’m done with HW3 (or working on the bonus)
B. I’ve started and I will probably finish on time
C. I’ve started but I will likely need to use at least

one late day
D. I’m unsure if I will need to use lateday(s) or not
E. I do not think I can get HW3 done by the

lateday deadline. (Sunday @ midnight)
F. I prefer not to say

Side question:
How do you say gif?

CSE333, Summer 2020L19: Sockets & DNS

Administrivia

❖ hw3 is due Thursday (8/6)

▪ Usual reminder: don’t forget to tag, clone elsewhere, and
recompile***************************************

❖ hw4 out on Friday (8/7)

❖ Exercise 15 will be released on Thursday

▪ Related to section this week

▪ Can start looking at it early; we’ll finish covering material on
Friday

3

CSE333, Summer 2020L19: Sockets & DNS

Lecture Outline

❖ Network Programming

▪ Sockets API

▪ Network Addresses

▪ DNS Lookup

4

CSE333, Summer 2020L19: Sockets & DNS

Files and File Descriptors

❖ Remember open(), read(), write(), and
close()?

▪ POSIX system calls for interacting with files

▪ open() returns a file descriptor

• An integer that represents an open file

• This file descriptor is then passed to read(), write(), and
close()

▪ Inside the OS, the file descriptor is used to index into a table that
keeps track of any OS-level state associated with the file, such as
the file position

5

Parameters to

Can’t be a

pointer, don’t

want to give

address to

kernel

CSE333, Summer 2020L19: Sockets & DNS

Networks and Sockets

❖ UNIX likes to make all I/O look like file I/O
▪ You use read() and write() to communicate with remote

computers over the network!

▪ A file descriptor use for network communications is called a
socket

▪ Just like with files:

• Your program can have multiple network channels open at once

• You need to pass a file descriptor to read() and write() to let the
OS know which network channel to use

6

In other words, we

specify the socket

to read/write on

CSE333, Summer 2020L19: Sockets & DNS

File Descriptor Table

OS’s File Descriptor Table for the Process

File
Descriptor

Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3
TCP

socket
local: 128.95.4.33:80

remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9
TCP

socket
local: 128.95.4.33:80

remote: 102.12.3.4:5544

7

Web Server

in
d

ex
.h

tm
l

p
ic

.p
n

g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

Can have multiple

files and network

connections open
0,1,2 always start as

stdin, stdout & stderr.

CSE333, Summer 2020L19: Sockets & DNS

Types of Sockets

❖ Stream sockets

▪ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, SCTP, or other stream transports

❖ Datagram sockets

▪ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

❖ Raw sockets

▪ For layer-3 communication (raw IP packet manipulation)

8

What we will focus on in 333

CSE333, Summer 2020L19: Sockets & DNS

Stream Sockets

❖ Typically used for client-server communications

▪ Client: An application that establishes a connection to a server

▪ Server: An application that receives connections from clients

▪ Can also be used for other forms of communication like peer-to-
peer

1) Establish connection:

2) Communicate:

3) Close connection:

9

client server

client server

client server

Client reaches out
Server is “passive” &

listens for clients

CSE333, Summer 2020L19: Sockets & DNS

Datagram Sockets

❖ Often used as a building block

▪ No flow control, ordering, or reliability, so used less frequently

▪ e.g. streaming media applications or DNS lookups

1) Create sockets:

2) Communicate:

10

host

host host

host

host

host host

host

CSE333, Summer 2020L19: Sockets & DNS

The Sockets API

❖ Berkeley sockets originated in 4.2BSD Unix (1983)

▪ It is the standard API for network programming

• Available on most OSs

▪ Written in C

❖ POSIX Socket API

▪ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced

• Better support for multi-threading was added

11

Can still use these in C++ code

You’ll see some C-idioms and design practices.

CSE333, Summer 2020L19: Sockets & DNS

Socket API: Client TCP Connection

❖ We’ll start by looking at the API from the point of view of
a client connecting to a server over TCP

❖ There are five steps:

1) Figure out the IP address and port to which to connect

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

12

Same as

file I/O

New

stuff

** Today **

Good Breakdown of this entire

process in section tomorrow

CSE333, Summer 2020L19: Sockets & DNS

Step 1: Figure Out IP Address and Port

❖ Several parts:

▪ Network addresses

▪ Data structures for address info

▪ DNS (Domain Name System) – finding IP addresses

13

C data structures 

CSE333, Summer 2020L19: Sockets & DNS

IPv4 Network Addresses

❖ An IPv4 address is a 4-byte tuple

▪ For humans, written in “dotted-decimal notation”

▪ e.g. 128.95.4.1 (80:5f:04:01 in hex)

❖ IPv4 address exhaustion

▪ There are 232 ≈ 4.3 billion IPv4 addresses

▪ There are ≈ 7.77 billion people in the world (February 2020)

14

(232 addresses)

How many internet connected devices do each of us have?

CSE333, Summer 2020L19: Sockets & DNS

IPv6 Network Addresses

❖ An IPv6 address is a 16-byte tuple

▪ Typically written in “hextets” (groups of 4 hex digits)

• Can omit leading zeros in hextets

• Double-colon replaces consecutive sections of zeros

▪ e.g. 2d01:0db8:f188:0000:0000:0000:0000:1f33

• Shorthand: 2d01:db8:f188::1f33

▪ Transition is still ongoing

• IPv4-mapped IPv6 addresses

– 128.95.4.1 mapped to ::ffff:128.95.4.1 or ::ffff:805f:401

• This unfortunately makes network programming more of a headache


15

(2128 addresses ~about 3.4×1038)

2 rules for

human

readability

1

2

CSE333, Summer 2020L19: Sockets & DNS

Linux Socket Addresses

❖ Structures, constants, and helper functions available in
#include <arpa/inet.h>

❖ Addresses stored in network byte order (big endian)

❖ Converting between host and network byte orders:
▪ uint32_t htonl(uint32_t hostlong);

▪ uint32_t ntohl(uint32_t netlong);

• ‘h’ for host byte order and ‘n’ for network byte order

• Also versions with ‘s’ for short (uint16_t instead)

❖ How to handle both IPv4 and IPv6?

▪ Use C structs for each, but make them somewhat similar

▪ Use defined constants to differentiate when to use each:
AF_INET for IPv4 and AF_INET6 for IPv6

16

First field in

a struct is

always an

ID

“AF” = Address Family

(other types of sockets

exist, not just ipv4 & ipv6)

CSE333, Summer 2020L19: Sockets & DNS

IPv4 Address Structures

17

// IPv4 4-byte address

struct in_addr {

uint32_t s_addr; // Address in network byte order

};

// An IPv4-specific address structure

struct sockaddr_in {

sa_family_t sin_family; // Address family: AF_INET

in_port_t sin_port; // Port in network byte order

struct in_addr sin_addr; // IPv4 address

unsigned char sin_zero[8]; // Pad out to 16 bytes

};

family port addr zero

struct sockaddr_in:

160 2 4 8

Always big endian

should always be AF_INET

(2 bytes)

CSE333, Summer 2020L19: Sockets & DNS

Practice Question

❖ Assume we have a struct sockaddr_in that
represents a socket connected to 198.35.26.96
(c6:23:1a:60) on port 80 (0x50) stored on a little-endian
machine.
▪ AF_INET = 2

▪ Fill in the bytes in memory below (in hex):

18

0

8

Zoom voting:

02:00 B: 040:0

00:02 B: 00:04

sin_family sin_port sin_addr

Zoom voting:

50:00 B: C0:00

00:50 B: 00:0C

Zoom voting:

C6:23:1A:60

60:1A:23:C6

02 00 00 50 C6 23 1A 60

00 00 00 00 00 00 00 00 zeroes

(host) (network) (network)

(host)

CSE333, Summer 2020L19: Sockets & DNS

IPv6 Address Structures

19

// IPv6 16-byte address

struct in6_addr {

uint8_t s6_addr[16]; // Address in network byte order

};

// An IPv6-specific address structure

struct sockaddr_in6 {

sa_family_t sin6_family; // Address family: AF_INET6

in_port_t sin6_port; // Port number

uint32_t sin6_flowinfo; // IPv6 flow information

struct in6_addr sin6_addr; // IPv6 address

uint32_t sin6_scope_id; // Scope ID

};

fam port flow scope

struct sockaddr_in6:
addr

240 2 4 8 28

should always be AF_INET6

Can ignore

CSE333, Summer 2020L19: Sockets & DNS

Generic Address Structures

▪ Commonly create struct sockaddr_storage, then pass
pointer cast as struct sockaddr* to connect()

20

// A mostly-protocol-independent address structure.

// Pointer to this is parameter type for socket system calls.

struct sockaddr {

sa_family_t sa_family; // Address family (AF_* constants)

char sa_data[14]; // Socket address (size varies

// according to socket domain)

};

// A structure big enough to hold either IPv4 or IPv6 structs

struct sockaddr_storage {

sa_family_t ss_family; // Address family

// padding and alignment; don’t worry about the details

char __ss_pad1[_SS_PAD1SIZE];

int64_t __ss_align;

char __ss_pad2[_SS_PAD2SIZE];

};

Family is always first to identify the socket type

struct sockaddr*

struct sockaddr

isn’t big enough for

ipv6

CSE333, Summer 2020L19: Sockets & DNS

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts human-readable string representation (“presentation”)
to network byte ordered address

▪ Returns 1 (success), 0 (bad src), or -1 (error)

21

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

struct sockaddr_in sa; // IPv4

struct sockaddr_in6 sa6; // IPv6

// IPv4 string to sockaddr_in (192.0.2.1 = C0:00:02:01).

inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

// IPv6 string to sockaddr_in6.

inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

return EXIT_SUCCESS;

}

genaddr.cc

int inet_pton(int af, const char* src, void* dst);

Address family String representation

Addr destination:

struct in_addr*

// or

struct in_6addr*

CSE333, Summer 2020L19: Sockets & DNS

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts network addr in src into buffer dst of size size

▪ Returns dst on success; NULL on error

22

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

struct sockaddr_in6 sa6; // IPv6

char astring[INET6_ADDRSTRLEN]; // IPv6

// IPv6 string to sockaddr_in6.

inet_pton(AF_INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6_addr));

// sockaddr_in6 to IPv6 string.

inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);

std::cout << astring << std::endl;

return EXIT_SUCCESS;

}

genstring.cc

const char* inet_ntop(int af, const void* src,

char* dst, socklen_t size);

Address family

Addr src:

struct in_addr*

// or

struct in_6addr*

If converting ipv4:

INET_ADDRSTRLEN

// 2001:0db8:63b3:1::3490

CSE333, Summer 2020L19: Sockets & DNS

Domain Name System

❖ People tend to use DNS names, not IP addresses

▪ The Sockets API lets you convert between the two

▪ It’s a complicated process, though:

• A given DNS name can have many IP addresses

• Many different IP addresses can map to the same DNS name

– An IP address will reverse map into at most one DNS name

• A DNS lookup may require interacting with many DNS servers

❖ You can use the Linux program “dig” to explore DNS

▪ dig @server name type (+short)

• server: specific name server to query

• type: A (IPv4), AAAA (IPv6), ANY (includes all types)

23

CSE333, Summer 2020L19: Sockets & DNS

DNS Hierarchy

24

.

mail newsdocs www

cncom orgedu • • •

google netflixfacebook • • • wikipedia fsfapache • • •

Root
Name Servers

Top-level
Domain Servers

• • • news www• • •

CSE333, Summer 2020L19: Sockets & DNS

Resolving DNS Names

❖ The POSIX way is to use getaddrinfo()

▪ A complicated system call found in #include <netdb.h>

▪ Basic idea:

• Tell getaddrinfo() which host and port you want resolved

– String representation for host: DNS name or IP address

• Set up a “hints” structure with constraints you want respected

• getaddrinfo() gives you a list of results packed into an
“addrinfo” structure/linked list

– Returns 0 on success; returns negative number on failure

• Free the struct addrinfo later using freeaddrinfo()

25

int getaddrinfo(const char* hostname,

const char* service,

const struct addrinfo* hints,

struct addrinfo** res);
Output param

CSE333, Summer 2020L19: Sockets & DNS

getaddrinfo

❖ getaddrinfo() arguments:

▪ hostname – domain name or IP address string

▪ service – port # (e.g. "80") or service name (e.g. "www")
or NULL/nullptr

▪

26

struct addrinfo {

int ai_flags; // additional flags

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0

size_t ai_addrlen; // length of socket addr in bytes

struct sockaddr* ai_addr; // pointer to socket addr

char* ai_canonname; // canonical name

struct addrinfo* ai_next; // can form a linked list

};

Hints Parameter

Can use 0 or nullptr to

indicate you don’t want to

filter results on that

characteristic

CSE333, Summer 2020L19: Sockets & DNS

DNS Lookup Procedure

1) Create a struct addrinfo hints

2) Zero out hints for “defaults”

3) Set specific fields of hints as desired

4) Call getaddrinfo() using &hints

5) Resulting linked list res will have all fields appropriately set

❖ See dnsresolve.cc
27

struct addrinfo {

int ai_flags; // additional flags

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0

size_t ai_addrlen; // length of socket addr in bytes

struct sockaddr* ai_addr; // pointer to socket addr

char* ai_canonname; // canonical name

struct addrinfo* ai_next; // can form a linked list

};

