W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

Sockets & DNS
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
lan Hsiao Allen Jung Sylvia Wang

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

How is HW3 Looking?
A.
B I’ve started and | will probably finish on time

C. l'vestarted but | will likely need to use at least
one late day

D. I'm unsure if | will need to use lateday(s) or not

E. 1do notthinkl can get HW3 done by the

lateday deadline. (Sunday @ midnight)
F. | prefer not to say

Side question:
How do you say gif?
2

YW UNIVERSITY of WASHINGTON L19: Sockets & DNS

Administrivia

<+ hw3 is due Thursday (8/6)

= Usual reminder: don’t forget to tag, clone elsewhere, and
recompile***************************************

3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k ok 3k 3k ok 3k 3k 3k 3k ok 3k 3k 3k %k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k %k 3k 3k k ok %k k %k k k

<+ hw4 out on Friday (8/7)

+ Exercise 15 will be released on Thursday
= Related to section this week

= Can start looking at it early; wé’ll finish covering material on
Friday

YA UNIVERSITY of WASHINGTON L19: Sockets & DNS

CSE333, Summer 2020

Lecture Outline

+» Network Programming
= Sockets API
" Network Addresses
= DNS Lookup

CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON L19: Sockets & DNS

Files and File Descriptors

+» Remember open (), read(),write (), and
close()?
= POSIX system calls for interacting with files

= open () returns a file descriptor
Cantbe a—>. An integer that represents an open file

pointer, don't o _ .
want +o give * This file descriptor is then passed to read (), write (), and

address +o close ()

kernel
" |nside the OS, the file descriptor is used to index into a table that
keeps track of any OS-level state associated with the file, such as

the file position

Parameters to

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

Networks and Sockets

+» UNIX likes to make all 1/0 look like file I/O

" You use read () andwrite () to communicate with remote
computers over the network!

= A file descriptor use for network communications is called a

= Just like with files:

- Your program can have multiple network channels open at once

- You need to pass a file descriptor to read () and write () tolet the
OS know which network channel to use In other words, we

specify the socket
to read/write on

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

File Descriptor Table

OS’s File Descriptor Table for the Process

128.95.4.33 File Type Connection

Descriptor

Web Server
0 pipe stdin (console)
1 pipe stdout (console)
2 pipe stderr (console)
3 TCP local: 128.95.4.33:80

socket | remote: 44.1.19.32:7113

IS
= 5 file index.html
(]
E 8 file pic.png
/7 9 TCP local: 128.95.4.33:80

Can have multiple
files and network . [KelElgLs
connections open __ —

socket | remote: 102.12.3.4:5544

client

0,2 always start as
stdin, stdont & stderr.

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

Types of Sockets

<§g Stream sockets what we will focus on in 333

" For connection-oriented, point-to-point, reliable byte streams
-« Using TCP, SCTP, or other stream transports

+» Datagram sockets

" For connection-less, one-to-many, unreliable packets
- Using UDP or other packet transports

+ Raw sockets
" For layer-3 communication (raw IP packet manipulation)

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

Stream Sockets

+ Typically used for client-server communications
= Client: An application that establishes a connection to a server
= Server: An application that receives connections from clients
= Can also be used for other forms of communication like peer-to-

peer
‘ Server is “passive” &
Client reaches out listens for clients
1) Establish connection:
: : - —
3) Close connection:

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

Datagram Sockets

+ Often used as a building block
= No flow control, ordering, or reliability, so used less frequently
= e.g. streaming media applications or DNS lookups

* host

* host

1) Create sockets:

host

2) Communicate:

Iél III

10

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

The Sockets API

+ Berkeley sockets originated in 4.2BSD Unix (1983)

" |tis the standard API for network programming
- Available on most OSs

47" Written in C con +ill use these in C++ code
You'll see some C-idioms and desion practices.

+» POSIX Socket API
= Aslight update of the Berkeley sockets API

- A few functions were deprecated or replaced
- Better support for multi-threading was added

11

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

Socket API: Client TCP Connection

o0

o0

New

stuff

Same as
file T/OT

We'll start by looking at the APl from the point of view of
a client connecting to a server over TCP

There are five steps:
1) Figure out the IP address and port to which to connect ™ Teday ™

~2) Create a socket

3) Connect the socket to the remote server
4) read() andwrite () data using the socket

5) Close the socket

Good Breakdown of this entire
pProcess n section tomorrow

12

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

Step 1: Figure Out IP Address and Port

+» Several parts:
= Network addresses
® Data structures for address info C data structures @

= DNS (Domain Name System) — finding IP addresses

13

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

IPv4 Network Addresses

+» An IPv4 address is a 4-byte tuple (237 addresses)

" For humans, written in “dotted-decimal notation”
" e.9.128.95.4.1 (80:5f£:04:01 in hex)

« |IPv4 address exhaustion
" There are 232 = 4.3 billion IPv4 addresses
" There are = 7.77 billion people in the world (February 2020)

How many intervet convected devices do each of us have?

14

CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON L19: Sockets & DNS

IPv6 Network Addresses

+» An IPv6 address is a 16-byte tuple (212° addresses ~about 3.4<1072)

= Typically written in “hextets” (groups of 4 hex digits)
2rules for 1« Can omit leading zeros in hextets

numan

readability 2« Double-colon replaces consecutive sections of zeros

" e.g.2d01:0db8:£188:0600:0000:0600:0000:1£33
- Shorthand: 2d01:db8:£f188::1£f33

" Transition is still ongoing

 |Pv4-mapped IPv6 addresses
— 128.95.4. 1 mappedto : : ££££:128.954.1or : : ££££:805£:401

 This unfortunately makes network programming more of a headache

®

15

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

Linux Socket Addresses

o0

o0

o0

o0

Structures, constants, and helper functions available in
#include <arpa/inet.h>

Addresses stored in network byte order (big endian)

Converting between host and network byte orders:
" uint32 t htonl (uint32 t hostlong);
" uint32 t ntohl (uint32 t netlong);

- ‘h’ for host byte order and ‘n’ for network byte order

« Also versions with ‘s’ for short (uint16 t instead)
_ First field v

How to handle both IPv4 and IPv6? a struct is

o always an
" Use C structs for each, but make them somewhat similar |,

= Use defined constants to differentiate when to use each:

AF INET forIPv4 and AF INET6 for IPv6(other types of sockets
“AF” L Address Family exist, not Just ipv4 & ipve) 16

YW UNIVERSITY of WASHINGTON

L19: Sockets & DNS

IPv4 Address Structures

CSE333, Summer 2020

struct 1n addr {
 uint32_t s_addr;
b

struct sockaddr in {

b o

// IPv4d 4-byte address

sa family t sin family;
in port t sin port;
__»Sstruct in addr sin addr;
unsigned char sin zero[8];

’

// Address in network byte order

Always big endian

// An IPv4-specific address structure

should always be AF_INET
// Address family: AF INET

// Port in network byte order (2

// IPv4 address
// Pad out to 16 bytes

bytes)

struct sockaddr in:

family| port

addr

Zzero

0 2 4

16

17

YW UNIVERSITY of WASHINGTON L19: Sockets & DNS

Practice Question

CSE333, Summer 2020

+ Assume we have a struct sockaddr in that

represents a socket connected to 198.35.26.96

(c6:23:1a:60) on port 80 (0x50) stored on a little-endian

machine.
" AF INET = 2

= Fill in the bytes in memory below (in hex):

sin_family Sin_port sin_addr
(host) (network) (network)
0) 00 00 50 Cl 27 1A)
8 9]0, 9]0, 00 00 00 00 00 00 2eroes
. (host)
Zoom voting:

Zoom voting:
9 02:00 @ 0400 @ 5000 @ C0:00

Qo slower NEs
Qo slower yes go slower

© 0002 @ 0004 © 0050 © 00:0C

Zoom voting:

9 6:23:1A:60

© 60:1A:23:C6

18

YW UNIVERSITY of WASHINGTON L19: Sockets & DNS

IPv6 Address Structures

CSE333, Summer 2020

// IPv6é 16-byte address
struct in6_ addr {

¥

// An IPvé6-specific address structure
struct sockaddr in6 {

/' uint8 t s6 addr[16]; // Address in network byte order

should always be AF_INETG

sa family t sin6 family; // Address family: AF INET6
in port t sin6 port; // Port number
uint32 t sin6 flowinfo; // IPvé flow information
__»struct in6 addr siné addr; // IPvV6 address\
uint32 t sin6 scope id; // Scope ID
b Can igmore
struct sockaddr 1né6:
— addr
famport] flow scope

0 2 4 8

24

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

Generic Address Structures

struct sockaddr*

7

\

// A mostly-protocol-independent address structure.
// Pointer to this 1is parameter type for socket system calls.

struct sockaddr ({ Family is always first +o identify the socket type
sa family t sa family; // Address family (AF * constants)
char sa data([l4]; // Socket address (size varies

// according to socket domain)

b g

// A structure big enough to hold either IPv4 or IPvé structs

struct sockaddr storage { struct sockaddr
sa family t ss family; // Address familyﬂgw+tﬂQEMOMQMf%r
PVG

// padding and alignment,; don’t worry about the details
char ss padl[SS PAD1SIZE];
inte4 t ss align;
char ss pad2[SS PAD2Z2SIZE];
i

D

" Commonly create struct sockaddr storage, then pass
pointer castas struct sockaddr* to connect ()

20

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

Addr destination:

Address Conversion et in s

Address family String representation /) oor

struct in o6addr*

< [int inet pton(int af, const char* src, void* dst);)

= Converts human-readable string representation (“presentation”)
to network byte ordered address

= Returns 1 (success), 0 (bad src), or =1 (error)

\

#}nclude <stdllp.h> genaddr.cc
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr in sa; // IPv4
struct sockaddr in6 sa6; // IPvé6

// IPv4 string to sockaddr in (192.0.2.1 = C0:00:02:01).
inet pton (AF INET, "192.0.2.1", &(sa.sin_addr));

// IPv6 string to sockaddr iné.
inet pton (AF INET6, "2001:db8:63b3:1::3490", & (sa6.sin6 _addr));

return EXIT SUCCESS;

21

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

o Addr sre:
Address Conversion sexuet in addx:
-AddfésSf%W%Hw struct in 6addr*

+ | const char* inet ntop(int af, const void* src,
char* dst, socklen t size);

= Converts network addr in src into buffer dst of size size

" Returns dst on success; NULL on error

\

#include <stdlip.h> genstring.cc
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr in6 sab6; // IPv6
char astring[INET6 ADDRSTRLEN]; // IPvé

// IPv6 string to sockaddr iné.
inet pton (AF INET6, "2001:0db8:63b3:1::3490", &(sab.sin6_addr));

, , It convertivg ipv4:
// sockaddr in6 to IPvé string. INET ADDRSTRLEN

inet ntop(AF INET6, &(sa6.sin6 addr), astring, INET6 ADDRSTRLEN) ;
std::cout << astring << std::endl; // 2001:0dv?:63V21:2490

return EXIT SUCCESS;

YW UNIVERSITY of WASHINGTON

L19: Sockets & DNS

CSE333, Summer 2020

Domain Name System

+ People tend to use DNS names, not IP addresses

" The Sockets API lets you convert between the two
" |t's a complicated process, though:
-« A given DNS name can have many IP addresses

- Many different IP addresses can map to the same DNS name

— An IP address will reverse map into at most one DNS name

- A DNS lookup may require interacting with many DNS servers

+ You can use the Linux program “dig” to explore DNS
" dig @server name type (+short)
- server: specific name server to query
- type: A(IPv4), AAAA (IPv6), ANY (includes all types)

23

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

DNS Hierarchy

Root
Name Servers

-~ 7 ~

-~
4
/ \ ~

N

7 J -
Cn [3N BN] .
Domain Servers
7 1 N 7 1 N
b E'y b E'y

org
/7 N\ S
/ \ ~

~ \ \ ~
/ \ SS / \ SS
/ \ - ~ / \ - ~
"4 ~ Sa 4 ~ Sa
facebook google IECEXIN netflix apache wikipedia JEEEX
Ren \:A 7 /7 \ S o R \:A R \:A / \ R \:A
v 71 \ S ¥ ¥ / \ ¥
P / \ L / \

/ / \ N / \
P4 ® < S ® §
docs mail news coe news coe

24

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

Resolving DNS Names

The POSIX way is to use getaddrinfo ()

= A complicated system call found in #include <netdb.h>

B | int getaddrinfo (const char* hostname,
const char* service,
const struct addrinfo* hints, <+«

| struct addrinfo** rescmﬁziga%?\\
- Tellgetaddrinfo () which host and port you want resolved
— String representation for host: DNS name or IP address
- Setup a “hints” structure with constraints you want respected
- getaddrinfo () gives you a list of results packed into an

“addrinfo” structure/linked list

— Returns 0 on success; returns negative number on failure

- Freethe struct addrinfo later using freeaddrinfo ()

25

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

getaddrinfo

. . Can use O or nullptr to
+ getaddrinfo () arguments: indicate you don't want to

filter results on that
characteristic

" service—port#(e.g. "80") or service name (e.g. "www"

" hostname —domain name or IP address string

| or NULL/nullptr
Hints Parameter
B | struct addrinfo {
int ali flags; // additional flags
{yint ai family; // AF INET, AF INET6, AF UNSPEC
int ai socktype; // SOCK STREAM, SOCK DGRAM, 0
int al protocol; // IPPROTO TCP, IPPROTO UDP, 0
size t ai addrlen; // length of socket addr in bytes
{¥struct sockaddr* ai addr; // pointer to socket addr
char* al canonname; // canonical name
{¥Pstruct addrinfo* ai next; // can form a linked list
I

26

W UNIVERSITY of WASHINGTON L19: Sockets & DNS CSE333, Summer 2020

DNS Lookup Procedure

struct addrinfo {
int ai flags; // additional flags
int ai_ family; // AF INET, AF INET6, AF UNSPEC
int al socktype; // SOCK STREAM, SOCK DGRAM, O
int ai_protocol; // IPPROTO TCP, IPPROTO UDP, 0
size t ai addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char* al canonname; // canonical name
struct addrinfo* ai next; // can form a linked 1list

Y

1) Createastruct addrinfo hints

2) Zeroout hints for “defaults”

3) Set specific fields of hints as desired

4) Callgetaddrinfo () using &éhints

5) Resulting linked list res will have all fields appropriately set

P imane s

27

