
CSE333, Summer 2020L19: Sockets & DNS

Stream Sockets

 Typically used for client-server communications
 Client: An application that establishes a connection to a server
 Server: An application that receives connections from clients
 Can also be used for other forms of communication like peer-to-

peer

1) Establish connection:

2) Communicate:

3) Close connection:

9

client server

client server

client server

CSE333, Summer 2020L19: Sockets & DNS

IPv4 Address Structures

17

// IPv4 4-byte address
struct in_addr {
uint32_t s_addr; // Address in network byte order

};

// An IPv4-specific address structure
struct sockaddr_in {
sa_family_t sin_family; // Address family: AF_INET
in_port_t sin_port; // Port in network byte order
struct in_addr sin_addr; // IPv4 address
unsigned char sin_zero[8]; // Pad out to 16 bytes

};

family port addr zero

struct sockaddr_in:

160 2 4 8

CSE333, Summer 2020L19: Sockets & DNS

Resolving DNS Names

 The POSIX way is to use getaddrinfo()
 A complicated system call found in #include <netdb.h>

 Basic idea:

• Tell getaddrinfo()which host and port you want resolved
– String representation for host: DNS name or IP address

• Set up a “hints” structure with constraints you want respected
• getaddrinfo() gives you a list of results packed into an

“addrinfo” structure/linked list
– Returns 0 on success; returns negative number on failure

• Free the struct addrinfo later using freeaddrinfo()

25

int getaddrinfo(const char* hostname,
const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

CSE333, Summer 2020L19: Sockets & DNS

DNS Lookup Procedure

1) Create a struct addrinfo hints

2) Zero out hints for “defaults”
3) Set specific fields of hints as desired
4) Call getaddrinfo() using &hints
5) Resulting linked list res will have all fields appropriately set

 See dnsresolve.cc
27

struct addrinfo {
int ai_flags; // additional flags
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes
struct sockaddr* ai_addr; // pointer to socket addr
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can form a linked list

};

9 17

25 27

