
CSE333, Summer 2020L17: Smart Pointers

C++ Smart Pointers

 A smart pointer is an object that stores a pointer to a
heap-allocated object
 A smart pointer looks and behaves like a regular C++ pointer

• By overloading *, ->, [], etc.

 These can help you manage memory
• The smart pointer will delete the pointed-to object at the right time

including invoking the object’s destructor
– When that is depends on what kind of smart pointer you use

• With correct use of smart pointers, you no longer have to remember
when to delete new’d memory!

6

CSE333, Summer 2020L17: Smart Pointers

Introducing: unique_ptr

 A unique_ptr is the sole owner of its pointee
 It will call delete on the pointee when it falls out of scope

 Guarantees uniqueness by disabling copy and assignment

13

Via the unique_ptr destructor

CSE333, Summer 2020L17: Smart Pointers

std::shared_ptr

 shared_ptr is similar to unique_ptr but we allow
shared objects to have multiple owners
 The copy/assign operators are not disabled and increment or

decrement reference counts as needed
• After a copy/assign, the two shared_ptr objects point to the same

pointed-to object and the (shared) reference count is 2

26

 When a shared_ptr is destroyed, the reference count is decremented
• When the reference count hits 0, we delete the pointed-to object!

CSE333, Summer 2020L17: Smart Pointers

Some Important Smart Pointer Methods

 std::unique_ptr U;
 U.get()

 U.release()

 U.reset(q)

 std::shared_ptr S;
 S.get()

 S.use_count()

 S.unique()

 std::weak_ptr W;
 W.lock()

 W.use_count()

 W.expired()

39

Returns the raw pointer U is managing

U stops managing its raw pointer and returns the raw pointer

U cleans up its raw pointer and takes ownership of q

Returns the raw pointer S is managing

Returns the reference count

Returns true iff S.use_count() == 1

Returns the reference count

Constructs a shared pointer based off of W and returns it

Returns true iff W is expired (W.use_count() == 0)

Visit http://www.cplusplus.com/ for more information on these!

