
CSE333, Summer 2020L17: Smart Pointers

C++ Smart Pointers

 A smart pointer is an object that stores a pointer to a
heap-allocated object
 A smart pointer looks and behaves like a regular C++ pointer

• By overloading *, ->, [], etc.

 These can help you manage memory
• The smart pointer will delete the pointed-to object at the right time

including invoking the object’s destructor
– When that is depends on what kind of smart pointer you use

• With correct use of smart pointers, you no longer have to remember
when to delete new’d memory!

6

CSE333, Summer 2020L17: Smart Pointers

Introducing: unique_ptr

 A unique_ptr is the sole owner of its pointee
 It will call delete on the pointee when it falls out of scope

 Guarantees uniqueness by disabling copy and assignment

13

Via the unique_ptr destructor

CSE333, Summer 2020L17: Smart Pointers

std::shared_ptr

 shared_ptr is similar to unique_ptr but we allow
shared objects to have multiple owners
 The copy/assign operators are not disabled and increment or

decrement reference counts as needed
• After a copy/assign, the two shared_ptr objects point to the same

pointed-to object and the (shared) reference count is 2

26

 When a shared_ptr is destroyed, the reference count is decremented
• When the reference count hits 0, we delete the pointed-to object!

CSE333, Summer 2020L17: Smart Pointers

Some Important Smart Pointer Methods

 std::unique_ptr U;
 U.get()

 U.release()

 U.reset(q)

 std::shared_ptr S;
 S.get()

 S.use_count()

 S.unique()

 std::weak_ptr W;
 W.lock()

 W.use_count()

 W.expired()

39

Returns the raw pointer U is managing

U stops managing its raw pointer and returns the raw pointer

U cleans up its raw pointer and takes ownership of q

Returns the raw pointer S is managing

Returns the reference count

Returns true iff S.use_count() == 1

Returns the reference count

Constructs a shared pointer based off of W and returns it

Returns true iff W is expired (W.use_count() == 0)

Visit http://www.cplusplus.com/ for more information on these!

