
CSE333, Summer 2020L16: C++ Inheritance II, Casts

Dispatch Decision Tree

 Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function
 If called on an object (e.g. obj.Fcn()), usually optimized into a

hard-coded function call at compile time
 If called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fcn(); // which version is called?

9

Try to understand why
the flow chart works, and
not only memorize it

CSE333, Summer 2020L16: C++ Inheritance II, Casts

Practice Question

 Apply what you’ve learned to a more
complex example!

 What is printed?

A. HI
B. HA
C. Compiler Error
D. Segmentation

fault
E. We’re lost…

13

class A {
public:
virtual void Foo() {
cout << "H";
this->Bar();

}

void Bar() {
cout << "A";

}
};

class B : public A {
public:
virtual void Bar() {
cout << "I";

}
};

int main() {
B b;
B* b_ptr = &b;

// Q:
b_ptr->Foo();

}

poll.cc

pollev.com/cse33320su

CSE333, Summer 2020L16: C++ Inheritance II, Casts

Abstract Classes

 Sometimes we want to include a function in a class but
only implement it in derived classes
 In Java, we would use an abstract method
 In C++, we use a “pure virtual” function

• Example: virtual string noise() = 0;

 A class containing any pure virtual methods is abstract
 You can’t create instances of an abstract class
 Extend abstract classes and override methods to use them

 A class containing only pure virtual methods is the same
as a Java interface
 Pure type specification without implementations

15

virtual string noise() = 0;

CSE333, Summer 2020L16: C++ Inheritance II, Casts

Casting in C++

 C++ provides an alternative casting style that is more
informative:
 static_cast<to_type>(expression)

 dynamic_cast<to_type>(expression)

 const_cast<to_type>(expression)

 reinterpret_cast<to_type>(expression)

 Always use these in C++ code
 Intent is clearer
 Easier to find in code via searching

26

9 13

15 26

