W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

C++ Inheritance Il, Casts
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
lan Hsiao Allen Jung Sylvia Wang

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

About how long did Exercise 12a take?

"Moo wR

1-2 Hours
2-3 Hours
3-4 Hours
4+ Hours
| didn’t submit / | prefer not to say

Side question:
What is the cutest animal?

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Administrivia

+ Exercise 14 released today, due Friday
® C++ inheritance with abstract class

= Exercise 13 comes out on Friday (yes, the ordering is weird)

<+ hw3 is due next Thursday (8/6)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

+ 1-on-1 Meetings
= Can be requested via a new form linked on the website!

= We know this quarter is odd, please don’t hesitate to request a

1-on-1 if you want to review something, can’t attend OH, or just
want to talk ©

w UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors

" Assignment

+» C++ Casting

+ Reference: C++ Primer, Chapter 15

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Reminder: virtual is “sticky”

« IfX::£ () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

" The vtables will include function pointers for (the correct) £

« £ () will be called using dynamic dispatch even if
overridden in a derived class without the virtual

keyword
" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’'ll sometimes see both, particularly in older code

CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts

What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writes ina call to the address of
the class’ method in the . text segment

- Based on the compile-time visible type of the callee

= This is different than Java

[class Derived : public Base { ... };
» Derived: :foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;

Base* bp = &d;
dp->foo () ; » Base::foo()
bp->foo () ;

return EXIT SUCCESS;

w UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Static Dispatch Example

+ Removed virtual on methods: N Stock h
— Defined in Stock & DividendStock 2tOCK.

double Stock::GetMarketValue () const;
double Stock::GetProfit() const;

4\/}!\4 defined in Stock, DividendStock iherits, Calls GetWarketValue
DividendStock dividend () ;]
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue ()
ds—->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s—->GetMarketValue () ;

// invokes Stock::GetProfit ().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s—->GetProfit () ;

// 1nvokes Stock::GetProfit (), since that method 1is inherited.
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit () ;

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Why Not Always Use virtual?

+ Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

« If £() calls g () inclass X and g is not virtual, we’re guaranteed to
call X: : g () and not g () in some subclass

— Particularly useful for framework design

+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

L0

% In C++ and C#, you can pick what you want

" Omitting virtual can cause obscure bugs
= (Most of the time, you want member function to be virtual)

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Dispatch Decision Tree

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g. ob7 .Fcn ()), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fen(); // which version 1s called?

'

Is Fen () Yes 3 PSRl =ONTE B [FE, W Yes Dynamic dispatch of
. : marked virtual in : \
defined in P cedT or in classes it - most-derived version of
PromisedT? rom'lsel Fcn () visible to ActualT
derives from? ———

l No l No Try +o understand why
the flow chart works, and
not only mewmorize i+

Compiler Static dispatch of
Error PromisedT::Fcn()

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Mixed Dispatch Example

Key:
Static dispatch
mixed.cc Dynamic dispatch
(class A { \(void main (int argc, b
public: char** argv) {
// ml will use static dispatch A ay :
omised Type
void ml () { cout << "al, "; } B b; promis d ﬁr
// m2 will use dynamic dispatch . . !Qf+?ﬂ.WP6
virtual void m2() { cout << "a2"; } a_ptr_a = &a;

A* a ptr b = &b;
B¥ b ptr—e—==&a: Compiler error
B* b ptr b = &b;

¥

class B : public A { e
public: @
void ml() { cout << "bl, "; }

// m2 is still virtual by default
virfpal void m2 () { cout << "b2"; }

a ptr a->ml(); // A
a ptr a->m2(); // Awm2

a ptr b->ml(); // A

Y7
) ‘ ‘ ‘ g tr b->m2(); // Bu
(remewmber, virtual is “sticky”) & _ptr b->m Bum2

Zoom voting: b ptr b->ml(); // Bum
0 A:ml @B:m1 b ptr b->m2(); // Bum2
e go slower
}
Q A:m2 @B:m2 \ J

go faster 10

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

o Poll Eve ryWhere pollev.com/cse33320su

+~ Apply what you’ve learned to a more

complex example! , poll.cc.
. . class A {
+» What is printed? public:
virtual void Foo () {

cout << "H";
this->Bar () ;

}

A. void Bar () {
Cout << "A";
B. HA \
. ; : I
C. Compiler Error |int main() {
] B b; class B : public A {
D. Segmentation B* b_ptr = &b; public:
virtual void Bar () {
fault // Q: cout << "I'";
b ptr->Foo () ;
E. We're lost... b },.}

13

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

+~ Apply what you’ve learned to a more

complex example! , poll.cc
. . class A {
+» What is printed? public:
"this" virtual void Foo () {
is of type A* cout << "H";
m this context this->Bar();
So, static dispatch }
A. It we removed “this—>" void Bar () {
we would get same behaviour COLER
B. HA 9 |
. . , I
C. Compiler Error |int main() {
i B b; class B : public A {
D. Segmentation B* b_ptr = &b; public:
faL"t virtual void Bar () {
/) Qr cout << "1";
) b ptr->Foo () ; }
E. We're lost... } s

14

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Abstract Classes

+~ Sometimes we want to include a function in a class but
only implement it in derived classes
" |n Java, we would use an abstract method
" |n C++, we use a “pure virtual” function
- Example: [virtual string noise() = 0;

+ A class containing any pure virtual methods is abstract
" You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface

" Pure type specification without implementations

15

w UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Lecture Outline

% C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors
= Assignment

+» C++ Casting

+ Reference: C++ Primer, Chapter 15

16

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Derived-Class Objects

+ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

« Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by
DividendStock

dividends

17

YW UNIVERSITY of WASHINGTON

L16: C++ Inheritance I, Casts

CSE333, Summer 2020

Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

- Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

« You can use the initialization list of the derived class to specify which
base class constructor to use

18

YW UNIVERSITY of WASHINGTON

Constructor Examples

L16: C++ Inheritance I, Casts

CSE333, Summer 2020

goodctor.cc

badctor.cc
[class Base { // no default ctor
public:
Base (int yi) y(yi) { }
int y;

b g

// Compiler error when you try to
// 1instantiate a Derl, as the

// synthesized default ctor needs
// to invoke Base's default ctor.

Cowmpiler
error ®
No defanl+
ctor

class Der?2
public:
Der2 (int yi,
Base (yi),

public Base {

int zi)
z(z1i) { }
™ Tuvokes a specific ctor

int z;

I

.

class Base {
public:

int y;
¥

// works now
class Derl

class Der?
public:

int z;

b g

\.

[// has default ctor

public:
int z; Because bhase has
}; defanl+ ctor
// still works l

Der?2 (int z1)

N\

public Base {

public Base {

z(z1i) { }

19

CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON

L16: C++ Inheritance I, Casts

Destructors and Inheritance

\/
0’0

\/
0’0

Destructor of a derived
class:
" First runs body of the dtor

= Then invokes of the dtor
of the base class

Static dispatch of
destructors is almost
always a mistake!

" Good habit to always
define a dtor as virtual

- Empty body if there’s
no work to do

baddtor.cc
(class Base {)
public:
Base() { x = new int; }

~Base () { delete x; }NUnyfWM,
int* x; Static dispatch

b o

class Derl : public Base {

public:
Derl() { y = new int; }
~Derl () { delete y; }

e AT K
Y boptr —~ X 7/
b’\P‘W —_— [
void foo () {

Base* bOptr =
Base* blptr =

new Base;
new Derl;

delete bOptr; // delete’sx
delete blptr; //delete’s x, but noty

L } Both invoke Base dtorlll J

20

YW UNIVERSITY of WASHINGTON

L16: C++ Inheritance I, Casts

Assignment and Inheritance

+» C++ allows you to assign
the value of a derived
class to an instance of
a base class
= Known as object slicing
 It'slegal sinceb = d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

slicing.cc

CSE333, Summer 2020

(class Base {
public:
Base (int x1i) : x(xi) { }

X
};int X;

: public Base {

class Derl

public:
Derl (int yi) : Base(l6), y(yi) { }
int y;

void foo () {
Base b (1l);
Derl d(2);
d = b; // Compiler error — vot evongh nfo
b =d; // ok What happeus +o 47

! Y is not copied over.

\

21

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

STL and Inheritance

+ Recall: STL containers store copies of values

" What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

" You get sliced ®

r#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 1i;

1i.push back (s) ; // OK
1i.push back(ds); // OUCH!

return EXIT SUCCESS;

22

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

STL and Inheritance

+ Instead, store pointers to heap-allocated objects in STL
containers

= Noslicing! © Vector<Stock*s
" sort () doesthe wrongthing ® Sorts by address value on defanlt

" You have to remember to de 1l et e your objects before
destroying the container ®
- Unless you use Smart pointers! // +o be talked about on Friday

23

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors

" Assignment

+» C++ Casting

+» Reference: C++ Primer §4.11.3,19.2.1

24

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Explicit Casting in C

= Simple syntax:| 1hs = (new type) rhs;
+» Used to:

" Convert between pointers of arbitrary type (\id*) my ptr

- Doesn’t change the data, but treats it differently

" Forcibly convert a primitive type to another (double) my_int
- Actually changes the representation

+ You can still use C-style casting in C++, but sometimes the
intent is not clear

25

w UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Casting in C++

+» C++ provides an alternative casting style that is more
informative:

" statlc cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)

+ Always use these in C++ code

" |ntent is clearer

= Easier to find in code via searching

26

CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON

static_cast

L16: C++ Inheritance I, Casts

. Auy well-defived conversion
+ static cast canconvert:

" Pointers to classes of related type
- Compiler error if classes are not related

- Dangerous to cast down a class hierarchy

" casting void*to T*
" Non-pointer conversion
- e.g. floattoint
+ static castis
checked at compile time

staticcast.cc

7

\

\

class A |
public:

int x; <:>
Y
class B { @
public:

float y; Q
}i

class C : public B {
public:
char z;

bg

void

foo ()

B b; C c;

//
A *
//
B*
//
C*

{

compiler error Wirelated types
aptr = static cast<A*>(&b);
ok Would have worked without cast
static cast<B*>(&c);
compiles, but dangerous

cptr = static cast<C*>(&b);
1 What happeus whew you do cptr->z7

bptr =

27

YW UNIVERSITY of WASHINGTON

L16: C++ Inheritance I, Casts

dynamic cast
+ dynamic cast canconvert:

= Pointers to classes of related type
= References to classes of related type

CSE333, Summer 2020

dynamiccast.cc

class Base {

public:
virtual void foo () { }
float x;

bg

class Derl public Base {

» dynamic cast is checked at both PUﬁli@
. L) char x;
compile time and run time .
= (Casts between (void bar () 1
unrelated classes fail Base b; Derl d;

at compile time

= Casts from base to
derived fail at run
time if the pointed-to
object is not the

assert (bptr

derived type s (EPRE
«» Can be used like
: bptr = &b;
instanceof dptr =

fronnjava assert (dptr

}

_

// OK (run-time check passes)
Base* bptr =

dynamic cast<Base*> (&d);
!= nullptr);

// OK (run-time check passes)
Derl* dptr =

dynamic cast<Derl*> (bptr);
!= nullptr);

// Run-time check fails, returns nullptr

dynamic cast<Derl*> (bptr);

!= nullptr);

w UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

const_cast

+ const cast adds or strips const-ness

= Dangerous (!)

rvoid foo(int* x) {
*x++;
}

volid bar (const int* x) {
foo (x); // compiler error
foo (const cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {
int x = 7;
bar (&x) ;

return EXIT SUCCESS;

}

29

YW UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts

reinterpret cast

+ reinterpret cast casts betweenincompatible types
= |Low-level reinterpretation of the bit pattern
" e.g. storing a pointer in an int, or vice-versa
- Works as long as the integral type is “wide” enough

" Converting between incompatible pointers
- Dangerous (!)
« This is used (carefully) in hw3

= Use any other C++ cast if you can.

CSE333, Summer 2020

30

YW UNIVERSITY of WASHINGTON L16: C++ Inheritance II, Casts

Extra Exercise #1

\/
0’0

o0

Design a class hierarchy to represent shapes
= e.g. Circle, Triangle, Square

Implement methods that:

" Construct shapes

" Move a shape (i.e. add (x,y) to the shape position)
= Returns the centroid of the shape

= Returns the area of the shape

= Print (), which prints out the details of a shape

CSE333, Summer 2020

31

W UNIVERSITY of WASHINGTON L16: C++ Inheritance Il, Casts CSE333, Summer 2020

Extra Exercise #2

+ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

" Constructs a vector of shapes
= Sorts the vector according to the area of the shape
" Prints out each member of the vector

«» Notes:
= Avoid slicing!
= Make sure the sorting works properly!

32

