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@ Poll Eve ryWhere pollev.com/cse33320su

About how long did Exercise 12a take?

"Moo wR

1-2 Hours
2-3 Hours
3-4 Hours
4+ Hours
| didn’t submit / | prefer not to say

Side question:
What is the cutest animal?
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Administrivia

+ Exercise 14 released today, due Friday
® C++ inheritance with abstract class

= Exercise 13 comes out on Friday (yes, the ordering is weird)

<+ hw3 is due next Thursday (8/6)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

+ 1-on-1 Meetings
= Can be requested via a new form linked on the website!

= We know this quarter is odd, please don’t hesitate to request a

1-on-1 if you want to review something, can’t attend OH, or just
want to talk ©
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Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors

" Assignment

+» C++ Casting

+ Reference: C++ Primer, Chapter 15
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Reminder: virtual is “sticky”

« IfX::£ () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

" The vtables will include function pointers for (the correct) £

« £ () will be called using dynamic dispatch even if
overridden in a derived class without the virtual

keyword
" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’'ll sometimes see both, particularly in older code
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What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writes ina call to the address of
the class’ method in the . text segment

- Based on the compile-time visible type of the callee

= This is different than Java

[ class Derived : public Base { ... };
» Derived: :foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;

Base* bp = &d;
dp->foo () ; » Base::foo()
bp->foo () ;

return EXIT SUCCESS;
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Static Dispatch Example

+ Removed virtual on methods: N Stock h
— Defined in Stock & DividendStock  2tOCK.

double Stock::GetMarketValue () const;
double Stock::GetProfit() const;

4\/}!\4 defined in Stock, DividendStock iherits, Calls GetWarketValue
DividendStock dividend () ; ]
DividendStock* ds = &dividend;
Stock* s = &dividend;

// Invokes DividendStock::GetMarketValue ()
ds—->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s—->GetMarketValue () ;

// invokes Stock::GetProfit ().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s—->GetProfit () ;

// 1nvokes Stock::GetProfit (), since that method 1is inherited.
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit () ;
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Why Not Always Use virtual?

+ Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

« If £() calls g () inclass X and g is not virtual, we’re guaranteed to
call X: : g () and not g () in some subclass

— Particularly useful for framework design

+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

L0

% In C++ and C#, you can pick what you want

" Omitting virtual can cause obscure bugs
= (Most of the time, you want member function to be virtual)
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Dispatch Decision Tree

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g. ob7 .Fcn () ), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fen(); // which version 1s called?

'

Is Fen () Yes 3 PSRl =ONTE B [FE, W Yes Dynamic dispatch of
. : marked virtual in : \
defined in P  cedT or in classes it - most-derived version of
PromisedT? rom'lsel Fcn () visible to ActualT
derives from? ———

l No l No Try +o understand why
the flow chart works, and
not only mewmorize i+

Compiler Static dispatch of
Error PromisedT::Fcn()
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Mixed Dispatch Example

Key:
Static dispatch
mixed.cc Dynamic dispatch
(class A { \( void main (int argc, b
public: char** argv) {
// ml will use static dispatch A ay :
omised Type
void ml () { cout << "al, "; } B b; promis d ﬁr
// m2 will use dynamic dispatch . . !Qf+?ﬂ.WP6
virtual void m2() { cout << "a2"; } a_ptr_a = &a;

A* a ptr b = &b;
B¥ b ptr—e—==&a: Compiler error
B* b ptr b = &b;

¥

class B : public A { e
public: @
void ml() { cout << "bl, "; }

// m2 is still virtual by default
virfpal void m2 () { cout << "b2"; }

a ptr a->ml(); // A
a ptr a->m2(); // Awm2

a ptr b->ml(); // A

Y7
) ‘ ‘ ‘ g tr b->m2(); // Bu
(remewmber, virtual is “sticky”) & _ptr b->m Bum2

Zoom voting: b ptr b->ml(); // Bum
0 A:ml @B:m1 b ptr b->m2(); // Bum2
e go slower
}
Q A:m2 @B:m2 \ J

go faster 10
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+~ Apply what you’ve learned to a more

complex example! , poll.cc.
. . class A {
+» What is printed? public:
virtual void Foo () {

cout << "H";
this->Bar () ;

}

A. void Bar () {
Cout << "A";
B. HA \
. ; : I
C. Compiler Error |int main() {
] B b; class B : public A {
D. Segmentation B* b_ptr = &b; public:
virtual void Bar () {
fault // Q: cout << "I'";
b ptr->Foo () ;
E. We're lost... b },.}

13
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@ Poll Eve ryWhere pollev.com/cse33320su

+~ Apply what you’ve learned to a more

complex example! , poll.cc
. . class A {
+» What is printed? public:
"this" virtual void Foo () {
is of type A* cout << "H";
m this context this->Bar();
So, static dispatch }
A. It we removed “this—>" void Bar () {
we would get same behaviour COLER
B. HA 9 |
. . , I
C. Compiler Error |int main() {
i B b; class B : public A {
D. Segmentation B* b_ptr = &b; public:
faL"t virtual void Bar () {
/) Qr cout << "1";
) b ptr->Foo () ; }
E. We're lost... } s

14
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Abstract Classes

+~ Sometimes we want to include a function in a class but
only implement it in derived classes
" |n Java, we would use an abstract method
" |n C++, we use a “pure virtual” function
- Example: [ virtual string noise() = 0;

+ A class containing any pure virtual methods is abstract
" You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface

" Pure type specification without implementations

15
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Lecture Outline

% C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors
= Assignment

+» C++ Casting

+ Reference: C++ Primer, Chapter 15

16
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Derived-Class Objects

+ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

« Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by
DividendStock

dividends

17
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Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

- Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

« You can use the initialization list of the derived class to specify which
base class constructor to use

18
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goodctor.cc

badctor.cc
[ class Base { // no default ctor
public:
Base (int yi) y(yi) { }
int y;

b g

// Compiler error when you try to
// 1instantiate a Derl, as the

// synthesized default ctor needs
// to invoke Base's default ctor.

Cowmpiler
error ®
No defanl+
ctor

class Der?2
public:
Der2 (int yi,
Base (yi),

public Base {

int zi)
z(z1i) { }
™ Tuvokes a specific ctor

int z;

I

.

class Base {
public:

int y;
¥

// works now
class Derl

class Der?
public:

int z;

b g

\.

[ // has default ctor

public:
int z; Because bhase has
}; defanl+ ctor
// still works l

Der?2 (int z1)

N\

public Base {

public Base {

z(z1i) { }

19
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Destructors and Inheritance

\/
0’0

\/
0’0

Destructor of a derived
class:
" First runs body of the dtor

= Then invokes of the dtor
of the base class

Static dispatch of
destructors is almost
always a mistake!

" Good habit to always
define a dtor as virtual

- Empty body if there’s
no work to do

baddtor.cc
(class Base { )
public:
Base() { x = new int; }

~Base () { delete x; }NUnyfWM,
int* x; Static dispatch

b o

class Derl : public Base {

public:
Derl() { y = new int; }
~Derl () { delete y; }

e AT K
Y boptr —~ X 7/
b’\P‘W —_— [
void foo () {

Base* bOptr =
Base* blptr =

new Base;
new Derl;

delete bOptr; // delete’sx
delete blptr; //delete’s x, but noty

L } Both invoke Base dtorlll J

20
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Assignment and Inheritance

+» C++ allows you to assign
the value of a derived
class to an instance of
a base class
= Known as object slicing
 It'slegal sinceb = d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

slicing.cc

CSE333, Summer 2020

(class Base {
public:
Base (int x1i) : x(xi) { }

X
};int X;

: public Base {

class Derl

public:
Derl (int yi) : Base(l6), y(yi) { }
int y;

void foo () {
Base b (1l);
Derl d(2);
d = b; // Compiler error — vot evongh nfo
b =d; // ok What happeus +o 47

! Y is not copied over.

\

21
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STL and Inheritance

+ Recall: STL containers store copies of values

" What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

" You get sliced ®

r#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 1i;

1i.push back (s) ; // OK
1i.push back(ds); // OUCH!

return EXIT SUCCESS;

22
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STL and Inheritance

+ Instead, store pointers to heap-allocated objects in STL
containers

= Noslicing! © Vector<Stock*s
" sort () doesthe wrongthing ® Sorts by address value on defanlt

" You have to remember to de 1l et e your objects before
destroying the container ®
- Unless you use Smart pointers! // +o be talked about on Friday

23
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Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Abstract Classes
= Constructors and Destructors

" Assignment

+» C++ Casting

+» Reference: C++ Primer §4.11.3,19.2.1

24
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Explicit Casting in C

= Simple syntax:| 1hs = (new type) rhs;
+» Used to:

" Convert between pointers of arbitrary type  (\id*) my ptr

- Doesn’t change the data, but treats it differently

" Forcibly convert a primitive type to another  (double) my_int
- Actually changes the representation

+ You can still use C-style casting in C++, but sometimes the
intent is not clear

25
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Casting in C++

+» C++ provides an alternative casting style that is more
informative:

" statlc cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)

+ Always use these in C++ code

" |ntent is clearer

= Easier to find in code via searching

26
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static_cast
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. Auy well-defived conversion
+ static cast canconvert:

" Pointers to classes of related type
- Compiler error if classes are not related

- Dangerous to cast down a class hierarchy

" casting void*to T*
" Non-pointer conversion
- e.g. floattoint
+ static castis
checked at compile time

staticcast.cc

7

\

\

class A |
public:

int x; <:>
Y
class B { @
public:

float y; Q
}i

class C : public B {
public:
char z;

bg

void

foo ()

B b; C c;

//
A *
//
B*
//
C*

{

compiler error Wirelated types
aptr = static cast<A*>(&b);
ok Would have worked without cast
static cast<B*>(&c);
compiles, but dangerous

cptr = static cast<C*>(&b);
1 What happeus whew you do cptr->z7

bptr =

27
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dynamic cast
+ dynamic cast canconvert:

= Pointers to classes of related type
= References to classes of related type

CSE333, Summer 2020

dynamiccast.cc

class Base {

public:
virtual void foo () { }
float x;

bg

class Derl public Base {

» dynamic cast is checked at both PUﬁli@
. L ) char x;
compile time and run time .
= (Casts between (void bar () 1
unrelated classes fail Base b; Derl d;

at compile time

= Casts from base to
derived fail at run
time if the pointed-to
object is not the

assert (bptr

derived type s (EPRE
«» Can be used like
: bptr = &b;
instanceof dptr =

fronnjava assert (dptr

}

\_

// OK (run-time check passes)
Base* bptr =

dynamic cast<Base*> (&d);
!= nullptr);

// OK (run-time check passes)
Derl* dptr =

dynamic cast<Derl*> (bptr);
!= nullptr);

// Run-time check fails, returns nullptr

dynamic cast<Derl*> (bptr);

!= nullptr);
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const_cast

+ const cast adds or strips const-ness

= Dangerous (!)

rvoid foo(int* x) {
*x++;
}

volid bar (const int* x) {
foo (x); // compiler error
foo (const cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {
int x = 7;
bar (&x) ;

return EXIT SUCCESS;

}

29
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reinterpret cast

+ reinterpret cast casts betweenincompatible types
= |Low-level reinterpretation of the bit pattern
" e.g. storing a pointer in an int, or vice-versa
- Works as long as the integral type is “wide” enough

" Converting between incompatible pointers
- Dangerous (!)
« This is used (carefully) in hw3

= Use any other C++ cast if you can.

CSE333, Summer 2020

30
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Extra Exercise #1

\/
0’0

o0

Design a class hierarchy to represent shapes
= e.g. Circle, Triangle, Square

Implement methods that:

" Construct shapes

" Move a shape (i.e. add (x,y) to the shape position)
= Returns the centroid of the shape

= Returns the area of the shape

= Print (), which prints out the details of a shape

CSE333, Summer 2020

31
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Extra Exercise #2

+ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

" Constructs a vector of shapes
= Sorts the vector according to the area of the shape
" Prints out each member of the vector

«» Notes:
= Avoid slicing!
= Make sure the sorting works properly!

32



