
CSE333, Summer 2020L15: C++ Inheritance I

Inheritance

 A parent-child “is-a” relationship between classes
 A child (derived class) extends a parent (base class)

 Benefits:
 Code reuse

• Children can automatically inherit code from parents

 Polymorphism
• Ability to redefine existing behavior but preserve the interface
• Children can override the behavior of the parent
• Others can make calls on objects without knowing which part of the

inheritance tree it is in

 Extensibility
• Children can add behavior

9

CSE333, Summer 2020L15: C++ Inheritance I

Dynamic Dispatch (like Java)

 Usually, when a derived function is available for an object,
we want the derived function to be invoked
 This requires a run time decision of what code to invoke

 A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type
 Can determine what to invoke from the object itself

 Example:
 void PrintStock(Stock* s) { s->Print(); }

 Calls the appropriate Print() without knowing the actual type
of *s, other than it is some sort of Stock

17

Is this a Stock or a
DividendStock ?

CSE333, Summer 2020L15: C++ Inheritance I

Practice Question

 Whose Foo() is called?

Q1 Q2
A. A B
B. A D
C. B B
D. B D
E. We’re lost…

22

class A {
public:
virtual void Foo();

};

class B : public A {
public:
virtual void Foo();

};

class C : public B {
};

class D : public C {
public:
virtual void Foo();

};

class E : public C {
};

void Bar() {
A* a_ptr;
C c;
E e;

// Q1:
a_ptr = &c;
a_ptr->Foo();

// Q2:
a_ptr = &e;
a_ptr->Foo();

}

pollev.com/cse33320su

CSE333, Summer 2020L15: C++ Inheritance I

vtables and the vptr

 If a class contains any virtual methods, the compiler
emits:
 A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class
• The pointers in the vtable point to the most-derived function for that

class

 A virtual table pointer (vptr) for each object instance
• A pointer to a virtual table as a “hidden” member variable
• When the object’s constructor is invoked, the vptr is initialized to

point to the vtable for the object’s class
• Thus, the vptr “remembers” what class the object is

26

1 per class (NOT 1 per instance)

1 per object instance

9 17

22 26

