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About how long did Exercise 12 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I didn’t submit / I prefer not to say

Side question:
how are you liking C++?
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Administrivia

❖ Exercise 12a released today!
▪ Next exercise is exercise 14. (We are temporarily skipping ex13)

❖ HW3 is due in two Thursdays (8/6)

▪ Get started early! (Typically considered the hardest HW)

▪ Debugging is hard, more in section!

❖ Mid Quarter Survey due Today!!! (7/27) @ 11:59 pm

▪ Feedback will be used to try and better the rest of this quarter 
and future quarters!
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Overview of Next Two Lectures

❖ C++ inheritance

▪ Review of basic idea (pretty much the same as in Java)

▪ What’s different in C++ (compared to Java)

• Static vs. dynamic dispatch – virtual functions and vtables (optional)

• Pure virtual functions, abstract classes, why no Java “interfaces”

• Assignment slicing, using class hierarchies with STL

▪ Casts in C++

❖ Reference:  C++ Primer, Chapter 15
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Lecture Outline

❖ Inheritance motivation & C++ Syntax

❖ Polymorphism & Dynamic Dispatch

❖ Virtual Tables & Virtual Table Pointers
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Stock Portfolio Example

❖ A portfolio represents a person’s financial investments

▪ Each asset has a cost (i.e. how much was paid for it) and a market 
value (i.e. how much it is worth)

• The difference between the cost and market value is the profit (or 
loss)

▪ Different assets compute market value in different ways

• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

• A dividend stock is a stock that also has dividend payments

• Cash is an asset that never incurs a profit or loss

6(Credit:  thanks to Marty Stepp for this example)
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Design Without Inheritance

❖ One class per asset type:

▪ Redundant!

▪ Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

❖ See sample code in initial.tar
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Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

Data

members

methods
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Inheritance

❖ A parent-child “is-a” relationship between classes

▪ A child (derived class) extends a parent (base class)

❖ Terminology:

▪ Mean the same things.  You’ll hear both.

8

Java C++

Superclass Base Class

Subclass Derived Class

Subclass inherits from 

super class.

(Superclass is “higher” 

in the hierarchy)
Derived class inherits 

from base class.

(base class is “higher” 

in the hierarchy)
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Inheritance

❖ A parent-child “is-a” relationship between classes

▪ A child (derived class) extends a parent (base class)

❖ Benefits:

▪ Code reuse

• Children can automatically inherit code from parents

▪ Polymorphism

• Ability to redefine existing behavior but preserve the interface

• Children can override the behavior of the parent

• Others can make calls on objects without knowing which part of the 
inheritance tree it is in

▪ Extensibility

• Children can add behavior
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Design With Inheritance
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Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

Asset (abstract)

GetMarketValue()

GetProfit()

GetCost()
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Like Java:  Access Modifiers

❖ public: visible to all other classes

❖ protected: visible to current class and its derived
classes

❖ private: visible only to the current class

❖ Use protected for class members only when

▪ Class is designed to be extended by derived classes

▪ Derived classes must have access but clients should not be 
allowed
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Class Derivation List

❖ Comma-separated list of classes to inherit from:

▪ Focus on single inheritance, but multiple inheritance possible

❖ Almost always you will want public inheritance
▪ Acts like extends does in Java

▪ Any member that is non-private in the base class is the same in 
the derived class; both interface and implementation inheritance

• Except that constructors, destructors, copy constructor, and 
assignment operator are never inherited
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#include "BaseClass.h"

class Name : public BaseClass {

...

};

: public Base1, public Base2 {
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Back to Stocks

BASE DERIVED
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Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()
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Back to Stocks

❖ A derived class:

▪ Inherits the behavior and state (specification) of the base class

▪ Overrides some of the base class’ member functions (opt.)

▪ Extends the base class with new member functions, variables 
(opt.)
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Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

dividends_

GetMarketValue()

GetProfit()

GetCost()

PayDividend()

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()
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Lecture Outline

❖ Inheritance motivation & C++ Syntax

❖ Polymorphism & Dynamic Dispatch

❖ Virtual Tables & Virtual Table Pointers
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Polymorphism in C++

❖ In Java:  PromisedType var = new ActualType();

▪ var is a reference (different term than C++ reference) to an 
object of ActualType on the Heap

▪ ActualType must be the same class or a subclass of 
PromisedType

❖ In C++:  PromisedType* var_p = new ActualType();

▪ var_p is a pointer to an object of ActualType on the Heap

▪ ActualType must be the same or a derived class of 
PromisedType

▪ (also works with references)

▪ PromisedType defines the interface (i.e. what can be called on 
var_p), but ActualType may determine which version gets 
invoked
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Dynamic Dispatch (like Java)

❖ Usually, when a derived function is available for an object, 
we want the derived function to be invoked

▪ This requires a run time decision of what code to invoke

❖ A member function invoked on an object should be the 
most-derived function accessible to the object’s visible 
type

▪ Can determine what to invoke from the object itself

❖ Example:  
▪ void PrintStock(Stock* s) { s->Print(); }

▪ Calls the appropriate Print() without knowing the actual type 
of *s, other than it is some sort of Stock

17

Is this a Stock or a 

DividendStock ?



CSE333, Summer 2020L15:  C++ Inheritance I

Requesting Dynamic Dispatch (C++)

❖ Prefix the member function declaration with the 
virtual keyword

▪ Derived/child functions don’t need to repeat virtual, but was 
traditionally good style to do so

▪ This is how method calls work in Java (no virtual keyword needed)

▪ You almost always want functions to be virtual

❖ override keyword (C++11)

▪ Tells compiler this method should be overriding an inherited 
virtual function – always use if available

▪ Prevents overloading vs. overriding bugs

❖ Both of these are technically optional in derived classes

▪ Be consistent and follow local conventions (Google Style Guide 
says no virtual if override)

18



CSE333, Summer 2020L15:  C++ Inheritance I

Dynamic Dispatch Example

❖ When a member function is invoked on an object:

▪ The most-derived function accessible to the object’s visible type is 
invoked (decided at run time based on actual type of the object)
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double DividendStock::GetMarketValue() const {

return get_shares() * get_share_price() + dividends_;

}

double "DividendStock"::GetProfit() const {  // inherited

return GetMarketValue() – GetCost(); 

}

double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

}

DividendStock.cc

Stock.cc

Inherited

from stock

Should call DividendStock::GetMarketValue()
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Dynamic Dispatch Example

20

#include "Stock.h"

#include "DividendStock.h"

DividendStock dividend();

DividendStock* ds = &dividend;

Stock* s = &dividend;   // why is this allowed?

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.  

// Stock::GetProfit() invokes DividendStock::GetMarketValue(), 

// since that is the most-derived accessible function.

s->GetProfit();

A DividendStock “is-a” Stock, and has 

every part of Stock’s interface  
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Most-Derived
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class A {

public:

// Foo will use dynamic dispatch

virtual void Foo();

};

class B : public A {

public:

// B::Foo overrides A::Foo

virtual void Foo();

};

class C : public B {

// C inherits B::Foo()

};

void Bar() {

A* a_ptr;

C c;

a_ptr = &c;

// Whose Foo() is called?

a_ptr->Foo();

}

Has Foo definition

A

B

C

// B::Foo
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Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. B B

D. B D

E. We’re lost…
22

class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

virtual void Foo();

};

class E : public C {

};

void Bar() {

A* a_ptr;

C c;

E e;

// Q1:

a_ptr = &c;

a_ptr->Foo();

// Q2: 

a_ptr = &e;

a_ptr->Foo();

}

pollev.com/cse33320su
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Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. B B

D. B D

E. We’re lost…
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class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

virtual void Foo();

};

class E : public C {

};

void Bar() {

A* a_ptr;

C c;

E e;

// Q1:

a_ptr = &c;

a_ptr->Foo();

// Q2: 

a_ptr = &e;

a_ptr->Foo();

}

A

B

C

D E

B::Foo()

B::Foo()

pollev.com/cse33320su
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Lecture Outline

❖ Inheritance motivation & C++ Syntax

❖ Polymorphism & Dynamic Dispatch

❖ Virtual Tables & Virtual Table Pointers
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How Can This Possibly Work?

❖ The compiler produces Stock.o from just Stock.cc

▪ It doesn’t know that DividendStock exists during this process

▪ So then how does the emitted code know to call 
Stock::GetMarketValue() or 
DividendStock::GetMarketValue()

or something else that might not exist yet?

• Function pointers!!!
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double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

} Stock.cc

virtual double Stock::GetMarketValue() const;

virtual double Stock::GetProfit() const;

Stock.h

Could be called on a DividendStock

Since DividendStock inherits 

Stock::GetProfit()
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vtables and the vptr

❖ If a class contains any virtual methods, the compiler 
emits:

▪ A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class

• The pointers in the vtable point to the most-derived function for that 
class

▪ A virtual table pointer (vptr) for each object instance

• A pointer to a virtual table as a “hidden” member variable

• When the object’s constructor is invoked, the vptr is initialized to 
point to the vtable for the object’s class

• Thus, the vptr “remembers” what class the object is

26

1 per class (NOT 1 per instance)

1 per object instance
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code for Foo()

code for Point’s samePlace()

Point vtable: 

x

vtable ptr

y

header

Point object

p    ???

351 Throwback: Dynamic Dispatch
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Point p = ???;

return p.samePlace(q);

// works regardless of what p is

return p->vtable[1](p, q);

Java: C pseudo-translation:

code for 3DPoint’s samePlace()

code for sayHi()

x

vtable ptr

y

header

3DPoint object

z

3DPoint vtable:

Could be

new Point()

or

new 3DPoint()
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vtable/vptr Example
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class Base {

public:

virtual void f1();

virtual void f2();

};

class Der1 : public Base {

public:

virtual void f1();

};

class Der2 : public Base {

public:

virtual void f2();

};

Base b;

Der1 d1;

Der2 d2;

Base* b0ptr = &b;

Base* b1ptr = &d1;

Base* b2ptr = &d2;

b0ptr->f1();  //

b0ptr->f2();  //

b1ptr->f1();  //

b1ptr->f2();  //

d2.f1();      //

b2ptr->f1();  //

b2ptr->f2();  //Base

Der1Der2

Base::f1

Base::f2

Der1::f1

Base::f2

Base::f1

Der2::f2

Base::f1

Difference

Between these?
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vtable/vptr Example
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Base b;

Der1 d1;

Der2 d2;

Base* b2ptr = &d2;

d2.f1();

// d2.vptr -->

// Der2.vtable.f1 -->

// Base::f1()

b2ptr->f1();

// b2ptr -->

// d2.vptr -->

// Der2.vtable.f1 -->

// Base::f1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base

f1()

f2()

Der1

f1()

f2()

Der2

f1()

f2()

Base::f1()

push %rbp

...

Base::f2()

push %rbp

...

Der1::f1()

push %rbp

...

Der2::f2()

push %rbp

...

b2ptr

No ambiguity Can

optimize

out

Hard coded call
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Let’s Look at Some Actual Code

❖ Let’s examine the following code using objdump

▪ g++ -Wall –g –std=c++11 -o vtable vtable.cc

▪ objdump -CDS vtable > vtable.d
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class Base {

public:

virtual void f1();

virtual void f2();

};

class Der1 : public Base {

public:

virtual void f1();

};

int main(int argc, char** argv) {

Der1 d1;

d1.f1();

Base* bptr = &d1; 

bptr->f1();

}

vtable.cc

Done via hard-

coded callq

Done with 

indirect jump on 

vtable entry
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More to Come Next Time!

❖ Any lingering questions?
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