W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

C++ Inheritance |
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
lan Hsiao Allen Jung Sylvia Wang

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

About how long did Exercise 12 take?

"moowR

1-2 Hours
2-3 Hours
3-4 Hours
4+ Hours
| didn’t submit / | prefer not to say

Side question:
how are you liking C++7?

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Administrivia

» Exercise 12a released today!

= Next exercise is exercise 14. (We are temporarily skipping ex13)

» HW3 is due in two Thursdays (8/6)

= Get started early! (Typically considered the hardest HW)
= Debugging is hard, more in section!

» Mid Quarter Survey due Today!!! (7/27) @ 11:59 pm

= Feedback will be used to try and better the rest of this quarter
and future quarters!

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Overview of Next Two Lectures

+ C++ inheritance
= Review of basic idea (pretty much the same as in Java)
= What’s different in C++ (compared to Java)
- Static vs. dynamic dispatch — virtual functions and vtables (optional)

- Pure virtual functions, abstract classes, why no Java “interfaces”
- Assignment slicing, using class hierarchies with STL

® Castsin C++

+ Reference: C++ Primer, Chapter 15

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Lecture Outline

+» Inheritance motivation & C++ Syntax
» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Stock Portfolio Example

+~ A portfolio represents a person’s financial investments
" Each asset has a cost (i.e. how much was paid for it) and a market
value (i.e. how much it is worth)

- The difference between the cost and market value is the profit (or
loss)

= Different assets compute market value in different ways

- A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

- A dividend stock is a stock that also has dividend payments
- Cash is an asset that never incurs a profit or loss

(Credit: thanks to Marty Stepp for this example)

L15: C++ Inheritance |

YW UNIVERSITY of WASHINGTON

CSE333, Summer 2020

Desigh Without Inheritance

+ One class per asset type:

total cost

= Redundant!

DividendStock

total cost

symbol symbol amount
total shares total shares GetMarketvalue ()

= Cannot treat multiple investments together
- e.g. can’t have an array or vector of different assets

+» Seesamplecodeininitial.tar

current price current price | Data
GetMarketValue () dividends_ m?@%?fi__.__
GetProfit () GetMarketValue ()
. methods
GetCost () GetProfit ()
GetCost ()

YW UNIVERSITY of WASHINGTON

Inheritance

L15: C++ Inheritance | CSE333, Summer 2020

+ A parent-child “is-a” relationship between classes

= A child (derived class) extends a parent (base class)

Subclass iherits from
super class.
(Superclass is “higher”
i the hierarchy)

" Mean the same things. You’ll hear both.

Superclass

Base Class

Subclass

Derived Class

Derived class wherits
from base class.
(base class is “higher”
i the hierarchy)

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Inheritance

+ A parent-child “is-a” relationship between classes

= A child (derived class) extends a parent (base class)

+~ Benefits:
= Code reuse
« Children can automatically inherit code from parents
= Polymorphism
- Ability to redefine existing behavior but preserve the interface

« Children can override the behavior of the parent

- Others can make calls on objects without knowing which part of the
inheritance tree it is in

= Extensibility

« Children can add behavior

YW UNIVERSITY of WASHINGTON

L15: C++ Inheritance |

Desigh With Inheritance

symbol
total_shares_
total_cost_

GetProfit ()
GetCost ()

Asset (abstract)

GetMarketValue ()
GetProfit ()
GetCost ()

current price_
GetMarketValue () DividendStock

symbol
total shares
total cost
current price
dividends_

GetMarketValue ()
GetProfit ()
GetCost ()

CSE333, Summer 2020

amount_

GetMarketValue ()

10

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Like Java: Access Modifiers

D)

*

o0

L)

o0

o0

public: visible to all other classes

protected: visible to current class and its derived
classes

private: visible only to the current class

Use protected for class members only when

= (Class is designed to be extended by derived classes

= Derived classes must have access but clients should not be
allowed

11

CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON L15: C++ Inheritance |

Class Derivation List

+» Comma-separated list of classes to inherit from:

r#include "BaseClass.h"

\

class Name : public BaseClass {

|} y
" Focus on single inheritance, but multiple inheritance possible
 public Based, public Base2 ¢

+ Almost always you will want public inheritance

= Acts like extends does in Java

= Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

<Q>Except that constructors, destructors, copy constructor, and
assignment operator are never inherited

12

YA UNIVERSITY of WASHINGTON

Back to Stocks

symbol
total_shares_
total_cost_

current_price_

GetMarketValue ()
GetProfit ()
GetCost ()

BASE

L15: C++ Inheritance |

DividendStock

symbol
total shares
total cost
current price
dividends

GetMarketValue ()
GetProfit ()
GetCost ()

DERIVED

CSE333, Summer 2020

13

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Back to Stocks

Stock .
symbol dividends
- symbol _
total_ shares__ total shares
total cost total cost_
i current price
current price_ Y Zv B _<) _ -~ GetProfit()
etMarketValue L
GetMarketVIalue () GetProfit () A” - - GetCost ()
GetProfit () GetCost () 4= PayDividend ()
GetCost ()

+ A derived class:
" |nherits the behavior and state (specification) of the base class
m some of the base class” member functions (opt.)

= Extends the base class with new member functions, variables
(opt.)

14

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Lecture Outline

» Inheritance motivation & C++ Syntax
+» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers

15

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Polymorphism in C++

+ InJava: PromisedType var = new ActualType();

= var is a reference (different term than C++ reference) to an
object of ActualType on the Heap

= ActualType must be the same class or a subclass of
PromisedType

/7

% In C++: PromisedType* var p = new ActualType () ;
" var pisa pointerto an object of ActualType on the Heap

" ActualType must be the same or a derived class of
PromisedType

= (also works with references)

PromisedType defines the interface (i.e. what can be called on

var p), but ActualType may determine which version gets
invoked

16

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Dynamic Dispatch (like Java)

+ Usually, when a derived function is available for an object,
we want the derived function to be invoked

= This requires a run time decision of what code to invoke

+» A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type
= Can determine what to invoke from the object itself
Ts this a Stock or a
« Example: / DividendStock 7
" void PrintStock (Stock* s) { s—->Print(); }

= Calls the appropriate Print () without knowing the actual type
of *s, other than it is some sort of Stock

17

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Requesting Dynamic Dispatch (C++)

« Prefix the member function declaration with the
virtual keyword

= Derived/child functions don’t need to repeat virtual, but was
traditionally good style to do so

" This is how method calls work in Java (no virtual keyword needed)
" You almost always want functions to be virtual

+» override keyword (C++11)

= Tells compiler this method should be overriding an inherited
virtual function — always use if available

= Prevents overloading vs. overriding bugs

+ Both of these are technically optional in derived classes

= Be consistent and follow local conventions (Google Style Guide

says no virtual if override)
18

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Dynamic Dispatch Example

+ When a member function is invoked on an object:

" The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

rdouble DividendStock: :GetMarketValue () const {

return get shares() * get share price() + dividends ;
}
Tubherited _ , ,
from stock] double "DividendStock"::GetProfit () const { // inherited
» return GetMarketValue () - GetCost();

} Should call DividendStock: :GetMarketValue () DividendStock.cc

\.

N

[double Stock::GetMarketValue () const {
return get shares() * get share price();

}

double Stock::GetProfit() const {
return GetMarketValue() - GetCost();

} Stock.cc

19

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Dynamic Dispatch Example

(#include "Stock.h" h
#include "DividendStock.h"
DividendStock dividend(); A DividendStock “is-a” Stock, and has
DividendStock* ds = ÷nd; every part of Stock’s interface
Stock* s = ÷nd; // why 1is this allowed?
// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;
// Invokes DividendStock::GetMarketValue ()
s—->GetMarketValue () ;
// 1invokes Stock::GetProfit (), since that method is inherited.
// Stock::GetProfit () invokes DividendStock::GetMarketValue/(),
// since that 1is the most-derived accessible function.
s—->GetProfit () ;

. J

20

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Most-Derived

rclass A { B
public:
// Foo will use dynamic dispatch
virtual void Foo () ; (void Bar() |]
}; A* a ptr;
C c;
class B : public A {
public: a ptr = &c;
// B::Foo overrides A::Foo
virtual void Foo () ; // Whose Foo () 1is called?
}; a_ptr->Foo () ; [/ B:Foo
L} J
class C : public B {
// C inherits B::Foo()
Ok) a

Has Foo definition a
(&))

YA UNIVERSITY of WASHINGTON

L15: C++ Inheritance |

@ Poll Everywhere

< Whose Foo () is called?

m O

Q1 Q2
A D
B B
B D

We’re lost...

CSE333, Summer 2020

pollev.com/cse33320su

\.

}

(void Bar () {

A* a ptr;

C c;

E e;

// 01:

a ptr = &cy

a ptr->Foo () ;

// Q2
a ptr = &e;
a ptr->Foo () ;

rclass A |

public:

virtual void Foo () ;

b g

class B
public:

: public A {

virtual void Foo () ;

b

class C : public B {
I

class D : public C {
public:

virtual void Foo () ;

b g

class E : public C {

k};

22

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

o Poll EveryWhere pollev.com/cse33320su
+ Whose Foo () is called? LSS L
public:

virtual void Foo () ;

@ b

@ volid Bar () { class B : public A {
e A* a ptr; public:
C c; virtual void Foo () ;

e @ E e; I
Q1 Q // O1: class C : public B {
a ptr = &c; }i

a ptr->Foo ()
- class D : public C {

A
B. A D BuFoo() |
c \\\// 02: public:

. B B a ptr = se; virtual void Foo () ;
tr->Foo () ; bi
D. B D -)
\} Brteo)) | class E : public C {

E. We're lost... 1

\ J

23

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

Lecture Outline

» Inheritance motivation & C++ Syntax
» Polymorphism & Dynamic Dispatch
+ Virtual Tables & Virtual Table Pointers

24

YW UNIVERSITY of WASHINGTON L15: C++ Inheritance |

CSE333, Summer 2020

How Can This Possibly Work?

+» The compiler produces Stock.o from just Stock.cc

" |t doesn’t know that DividendStock exists during this process

= So then how does the emitted code know to call

Stock: :GetMarketValue () or

DividendStock: :GetMarketValue ()
or something else that might not exist yet?

« Function pointers!!!

Stock.h

rvirtual double Stock: :GetMarketValue ()

virtual double Stock::GetProfit () const;

const;

rdouble Stock: :GetMarketValue () const {

}

}

return get shares() * get share price();

double Stock::GetProfit() const {/ Sivce "l)i\/ial@malSJrock mherits
return GetMarketValue () - GetCost(); StockuGetProfit()

Could e called on a Dividends

+ock

Stock.cc

25

YW UNIVERSITY of WASHINGTON L15: C++ Inheritance |

CSE333, Summer 2020

vtables and the vptr

+ If a class contains any virtual methods, the compiler

emits:

1 per class (NOT 1 per instance)
= A (single) virtual function table (vtable) for the class

-« Contains a function pointer for each virtual method in the class

- The pointers in the vtable point to the most-derived function for that
class

1 per object instance
= Avirtual table pointer (vptr) for each object instance

- A pointer to a virtual table as a “hidden” member variable

- When the object’s constructor is invoked, the vptr is initialized to
point to the vtable for the object’s class

- Thus, the vptr “remembers” what class the object is

26

L15: C++ Inheritance | CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON

351 Throwback: Dynamic Dispatch

Point object

header

~| vtable ptr

X1y

D 2727

3DPoint object

Point vtable:

'-ib code for Foo()

C——=
—

code for Point’s samePlace ()

3DPoint vtable:

- header
—p =
vtable ptr
@————1t=P| code for 3DPoint’s samePlace ()
x ly |z
k
Counld be —> code for sayHi ()
new Point()
or
Java: wew SPPoint() C pseudo-translation:
Point p = ?2272; // works regardless of what is

return p.samePlace(q);

return p->vtablel[l] (p, 9):

27

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

vtable/vptr Example

(class Base { B (Base b; h
public: Derl dil;
virtual wvoid f£1(); Der2 d2;
virtual void £2 () ;
s Base* bOptr = &b;
Base* blptr = &dl1;
class Derl : public Base { Base* b2ptr = &d2;
public:
virtual void £1(); bOptr->£f1(); //Base::fl
}i bOptr->£f2(); //Base::f2
class Der2 : public Base { blptr->£1(); // Derl::fl
public: blptr->£2(); // Base::f2
virtual void £2 () ;
\};) d2.£1(); // Base::fl
Differevce C::[prtr—>f1(); // Base::fl
@ Between these? \prtr—>f2 (); // Der2::f2)

28

YA UNIVERSITY of WASHINGTON

L15: C++ Inheritance |

vtable/vptr Example

object
instances

vtables

compiled
code

b|vptr @=

Base::f1()
push Srbp

dl | vptr @=

Base::f2()
push Srbp

b2ptr

Derl::£f1()
push S%rbp

d2 | vptr @=-

Der2::£2()
push S$rbp

CSE333, Summer 2020

(Base b;
Derl dl;
Der?2 d2;

Base* b2ptr = &d2;

()
// . AP
VDL 1
// Base::f1/()

Hard coded call

b2ptr->£1() ;
// b2ptr -->
// d2.vptr -->
// Der2.vtable.fl
// Base::f1()

No ambiguity Can

42 . ff/ /opﬂvmz,@

nt

>,

——>

29

YW UNIVERSITY of WASHINGTON

L15: C++ Inheritance |

Let’s Look at Some Actual Code

+ Let’s examine the following code using objdump

" g++ -Wall —-g

Done via hard-
coded callg

Done with
mdirect jump on
vtable entry

AN
~

—std=c++11
" objdump -CDS vtable > vtable.d

-0 vtable vtable.cc

b o

N

U

(class Base {
public:

b o

class Derl
public:

int main(int argc,

virtual void £1();
virtual void £2 () ;

: public Base {

virtual wvoid £1();

char** argv)
Derl dl;
dl.£1();
Base* bptr =
bptr->£1 () ;

&dl;

vtable.cc
\

{

CSE333, Summer 2020

30

W UNIVERSITY of WASHINGTON L15: C++ Inheritance | CSE333, Summer 2020

More to Come Next Time!

+ Any lingering questions?

31

