
CSE333, Summer 2020L15: C++ Inheritance I

C++ Inheritance I
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
Ian Hsiao Allen Jung Sylvia Wang

CSE333, Summer 2020L15: C++ Inheritance I

2

pollev.com/cse33320su

About how long did Exercise 12 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I didn’t submit / I prefer not to say

Side question:
how are you liking C++?

CSE333, Summer 2020L15: C++ Inheritance I

Administrivia

❖ Exercise 12a released today!
▪ Next exercise is exercise 14. (We are temporarily skipping ex13)

❖ HW3 is due in two Thursdays (8/6)

▪ Get started early! (Typically considered the hardest HW)

▪ Debugging is hard, more in section!

❖ Mid Quarter Survey due Today!!! (7/27) @ 11:59 pm

▪ Feedback will be used to try and better the rest of this quarter
and future quarters!

3

CSE333, Summer 2020L15: C++ Inheritance I

Overview of Next Two Lectures

❖ C++ inheritance

▪ Review of basic idea (pretty much the same as in Java)

▪ What’s different in C++ (compared to Java)

• Static vs. dynamic dispatch – virtual functions and vtables (optional)

• Pure virtual functions, abstract classes, why no Java “interfaces”

• Assignment slicing, using class hierarchies with STL

▪ Casts in C++

❖ Reference: C++ Primer, Chapter 15

4

CSE333, Summer 2020L15: C++ Inheritance I

Lecture Outline

❖ Inheritance motivation & C++ Syntax

❖ Polymorphism & Dynamic Dispatch

❖ Virtual Tables & Virtual Table Pointers

5

CSE333, Summer 2020L15: C++ Inheritance I

Stock Portfolio Example

❖ A portfolio represents a person’s financial investments

▪ Each asset has a cost (i.e. how much was paid for it) and a market
value (i.e. how much it is worth)

• The difference between the cost and market value is the profit (or
loss)

▪ Different assets compute market value in different ways

• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

• A dividend stock is a stock that also has dividend payments

• Cash is an asset that never incurs a profit or loss

6(Credit: thanks to Marty Stepp for this example)

CSE333, Summer 2020L15: C++ Inheritance I

Design Without Inheritance

❖ One class per asset type:

▪ Redundant!

▪ Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

❖ See sample code in initial.tar

7

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

Data

members

methods

CSE333, Summer 2020L15: C++ Inheritance I

Inheritance

❖ A parent-child “is-a” relationship between classes

▪ A child (derived class) extends a parent (base class)

❖ Terminology:

▪ Mean the same things. You’ll hear both.

8

Java C++

Superclass Base Class

Subclass Derived Class

Subclass inherits from

super class.

(Superclass is “higher”

in the hierarchy)
Derived class inherits

from base class.

(base class is “higher”

in the hierarchy)

CSE333, Summer 2020L15: C++ Inheritance I

Inheritance

❖ A parent-child “is-a” relationship between classes

▪ A child (derived class) extends a parent (base class)

❖ Benefits:

▪ Code reuse

• Children can automatically inherit code from parents

▪ Polymorphism

• Ability to redefine existing behavior but preserve the interface

• Children can override the behavior of the parent

• Others can make calls on objects without knowing which part of the
inheritance tree it is in

▪ Extensibility

• Children can add behavior

9

CSE333, Summer 2020L15: C++ Inheritance I

Design With Inheritance

10

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

Asset (abstract)

GetMarketValue()

GetProfit()

GetCost()

CSE333, Summer 2020L15: C++ Inheritance I

Like Java: Access Modifiers

❖ public: visible to all other classes

❖ protected: visible to current class and its derived
classes

❖ private: visible only to the current class

❖ Use protected for class members only when

▪ Class is designed to be extended by derived classes

▪ Derived classes must have access but clients should not be
allowed

11

CSE333, Summer 2020L15: C++ Inheritance I

Class Derivation List

❖ Comma-separated list of classes to inherit from:

▪ Focus on single inheritance, but multiple inheritance possible

❖ Almost always you will want public inheritance
▪ Acts like extends does in Java

▪ Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

• Except that constructors, destructors, copy constructor, and
assignment operator are never inherited

12

#include "BaseClass.h"

class Name : public BaseClass {

...

};

: public Base1, public Base2 {

CSE333, Summer 2020L15: C++ Inheritance I

Back to Stocks

BASE DERIVED

13

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

CSE333, Summer 2020L15: C++ Inheritance I

Back to Stocks

❖ A derived class:

▪ Inherits the behavior and state (specification) of the base class

▪ Overrides some of the base class’ member functions (opt.)

▪ Extends the base class with new member functions, variables
(opt.)

14

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

dividends_

GetMarketValue()

GetProfit()

GetCost()

PayDividend()

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

CSE333, Summer 2020L15: C++ Inheritance I

Lecture Outline

❖ Inheritance motivation & C++ Syntax

❖ Polymorphism & Dynamic Dispatch

❖ Virtual Tables & Virtual Table Pointers

15

CSE333, Summer 2020L15: C++ Inheritance I

Polymorphism in C++

❖ In Java: PromisedType var = new ActualType();

▪ var is a reference (different term than C++ reference) to an
object of ActualType on the Heap

▪ ActualType must be the same class or a subclass of
PromisedType

❖ In C++: PromisedType* var_p = new ActualType();

▪ var_p is a pointer to an object of ActualType on the Heap

▪ ActualType must be the same or a derived class of
PromisedType

▪ (also works with references)

▪ PromisedType defines the interface (i.e. what can be called on
var_p), but ActualType may determine which version gets
invoked

16

CSE333, Summer 2020L15: C++ Inheritance I

Dynamic Dispatch (like Java)

❖ Usually, when a derived function is available for an object,
we want the derived function to be invoked

▪ This requires a run time decision of what code to invoke

❖ A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type

▪ Can determine what to invoke from the object itself

❖ Example:
▪ void PrintStock(Stock* s) { s->Print(); }

▪ Calls the appropriate Print() without knowing the actual type
of *s, other than it is some sort of Stock

17

Is this a Stock or a

DividendStock ?

CSE333, Summer 2020L15: C++ Inheritance I

Requesting Dynamic Dispatch (C++)

❖ Prefix the member function declaration with the
virtual keyword

▪ Derived/child functions don’t need to repeat virtual, but was
traditionally good style to do so

▪ This is how method calls work in Java (no virtual keyword needed)

▪ You almost always want functions to be virtual

❖ override keyword (C++11)

▪ Tells compiler this method should be overriding an inherited
virtual function – always use if available

▪ Prevents overloading vs. overriding bugs

❖ Both of these are technically optional in derived classes

▪ Be consistent and follow local conventions (Google Style Guide
says no virtual if override)

18

CSE333, Summer 2020L15: C++ Inheritance I

Dynamic Dispatch Example

❖ When a member function is invoked on an object:

▪ The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

19

double DividendStock::GetMarketValue() const {

return get_shares() * get_share_price() + dividends_;

}

double "DividendStock"::GetProfit() const { // inherited

return GetMarketValue() – GetCost();

}

double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

}

DividendStock.cc

Stock.cc

Inherited

from stock

Should call DividendStock::GetMarketValue()

CSE333, Summer 2020L15: C++ Inheritance I

Dynamic Dispatch Example

20

#include "Stock.h"

#include "DividendStock.h"

DividendStock dividend();

DividendStock* ds = ÷nd;

Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.

// Stock::GetProfit() invokes DividendStock::GetMarketValue(),

// since that is the most-derived accessible function.

s->GetProfit();

A DividendStock “is-a” Stock, and has

every part of Stock’s interface

CSE333, Summer 2020L15: C++ Inheritance I

Most-Derived

21

class A {

public:

// Foo will use dynamic dispatch

virtual void Foo();

};

class B : public A {

public:

// B::Foo overrides A::Foo

virtual void Foo();

};

class C : public B {

// C inherits B::Foo()

};

void Bar() {

A* a_ptr;

C c;

a_ptr = &c;

// Whose Foo() is called?

a_ptr->Foo();

}

Has Foo definition

A

B

C

// B::Foo

CSE333, Summer 2020L15: C++ Inheritance I

Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. B B

D. B D

E. We’re lost…
22

class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

virtual void Foo();

};

class E : public C {

};

void Bar() {

A* a_ptr;

C c;

E e;

// Q1:

a_ptr = &c;

a_ptr->Foo();

// Q2:

a_ptr = &e;

a_ptr->Foo();

}

pollev.com/cse33320su

CSE333, Summer 2020L15: C++ Inheritance I

Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. B B

D. B D

E. We’re lost…
23

class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

virtual void Foo();

};

class E : public C {

};

void Bar() {

A* a_ptr;

C c;

E e;

// Q1:

a_ptr = &c;

a_ptr->Foo();

// Q2:

a_ptr = &e;

a_ptr->Foo();

}

A

B

C

D E

B::Foo()

B::Foo()

pollev.com/cse33320su

CSE333, Summer 2020L15: C++ Inheritance I

Lecture Outline

❖ Inheritance motivation & C++ Syntax

❖ Polymorphism & Dynamic Dispatch

❖ Virtual Tables & Virtual Table Pointers

24

CSE333, Summer 2020L15: C++ Inheritance I

How Can This Possibly Work?

❖ The compiler produces Stock.o from just Stock.cc

▪ It doesn’t know that DividendStock exists during this process

▪ So then how does the emitted code know to call
Stock::GetMarketValue() or
DividendStock::GetMarketValue()

or something else that might not exist yet?

• Function pointers!!!

25

double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

} Stock.cc

virtual double Stock::GetMarketValue() const;

virtual double Stock::GetProfit() const;

Stock.h

Could be called on a DividendStock

Since DividendStock inherits

Stock::GetProfit()

CSE333, Summer 2020L15: C++ Inheritance I

vtables and the vptr

❖ If a class contains any virtual methods, the compiler
emits:

▪ A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class

• The pointers in the vtable point to the most-derived function for that
class

▪ A virtual table pointer (vptr) for each object instance

• A pointer to a virtual table as a “hidden” member variable

• When the object’s constructor is invoked, the vptr is initialized to
point to the vtable for the object’s class

• Thus, the vptr “remembers” what class the object is

26

1 per class (NOT 1 per instance)

1 per object instance

CSE333, Summer 2020L15: C++ Inheritance I

code for Foo()

code for Point’s samePlace()

Point vtable:

x

vtable ptr

y

header

Point object

p ???

351 Throwback: Dynamic Dispatch

27

Point p = ???;

return p.samePlace(q);

// works regardless of what p is

return p->vtable[1](p, q);

Java: C pseudo-translation:

code for 3DPoint’s samePlace()

code for sayHi()

x

vtable ptr

y

header

3DPoint object

z

3DPoint vtable:

Could be

new Point()

or

new 3DPoint()

CSE333, Summer 2020L15: C++ Inheritance I

vtable/vptr Example

28

class Base {

public:

virtual void f1();

virtual void f2();

};

class Der1 : public Base {

public:

virtual void f1();

};

class Der2 : public Base {

public:

virtual void f2();

};

Base b;

Der1 d1;

Der2 d2;

Base* b0ptr = &b;

Base* b1ptr = &d1;

Base* b2ptr = &d2;

b0ptr->f1(); //

b0ptr->f2(); //

b1ptr->f1(); //

b1ptr->f2(); //

d2.f1(); //

b2ptr->f1(); //

b2ptr->f2(); //Base

Der1Der2

Base::f1

Base::f2

Der1::f1

Base::f2

Base::f1

Der2::f2

Base::f1

Difference

Between these?

CSE333, Summer 2020L15: C++ Inheritance I

vtable/vptr Example

29

Base b;

Der1 d1;

Der2 d2;

Base* b2ptr = &d2;

d2.f1();

// d2.vptr -->

// Der2.vtable.f1 -->

// Base::f1()

b2ptr->f1();

// b2ptr -->

// d2.vptr -->

// Der2.vtable.f1 -->

// Base::f1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base

f1()

f2()

Der1

f1()

f2()

Der2

f1()

f2()

Base::f1()

push %rbp

...

Base::f2()

push %rbp

...

Der1::f1()

push %rbp

...

Der2::f2()

push %rbp

...

b2ptr

No ambiguity Can

optimize

out

Hard coded call

CSE333, Summer 2020L15: C++ Inheritance I

Let’s Look at Some Actual Code

❖ Let’s examine the following code using objdump

▪ g++ -Wall –g –std=c++11 -o vtable vtable.cc

▪ objdump -CDS vtable > vtable.d

30

class Base {

public:

virtual void f1();

virtual void f2();

};

class Der1 : public Base {

public:

virtual void f1();

};

int main(int argc, char** argv) {

Der1 d1;

d1.f1();

Base* bptr = &d1;

bptr->f1();

}

vtable.cc

Done via hard-

coded callq

Done with

indirect jump on

vtable entry

CSE333, Summer 2020L15: C++ Inheritance I

More to Come Next Time!

❖ Any lingering questions?

31

