
CSE333, Summer 2020L11: C++ Constructor Insanity

Class Definition (.h file)

4

#ifndef POINT_H_
#define POINT_H_

class Point {
public:
Point(const int x, const int y); // constructor
int get_x() const { return x_; } // inline member function
int get_y() const { return y_; } // inline member function
double Distance(const Point& p) const; // member function
void SetLocation(const int x, const int y); // member function

private:
int x_; // data member
int y_; // data member

}; // class Point

#endif // POINT_H_

Point.h

STYLE
TIP

Google C++ naming conventions for
data members

Inline definition ok for simple
getters/setters

D
ec

la
ra

ti
on

s

const means the object
we are calling on, can’t be changed

CSE333, Summer 2020L11: C++ Constructor Insanity

Constructors

 A constructor (ctor) initializes a newly-instantiated object
 A class can have multiple constructors that differ in parameters

• Which one is invoked depends on how the object is instantiated

 A constructor is always invoked when creating a new instance of
an object.

 Written with the class name as the method name:

 C++ will automatically create a synthesized default constructor if
you have no user-defined constructors
• Takes no arguments and calls the default ctor on all non-“plain old

data” (non-POD) member variables
• Synthesized default ctor will fail if you have non-initialized const or

reference data members
9

Point(const int x, const int y);

Created for you

Zero arg

CSE333, Summer 2020L11: C++ Constructor Insanity

Initialization vs. Construction

 Data members in initializer list are initialized in the order they are
defined in the class, not by the initialization list ordering (!)
• Data members that don’t appear in the initialization list are default

initialized/constructed before body is executed

 Initialization preferred to assignment to avoid extra steps
• Real code should never mix the two styles

14

class Point3D {
public:
// constructor with 3 int arguments
Point3D(const int x, const int y, const int z) : y_(y), x_(x) {
z_ = z;

}

private:
int x_, y_, z_; // data members

}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

STYLE
TIP

1) set x_2) set y_

3) set z_
(garbage)4) set z_

CSE333, Summer 2020L11: C++ Constructor Insanity

Copy Constructors

 C++ has the notion of a copy constructor (cctor)
 Used to create a new object as a copy of an existing object

16

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor
Point::Point(const Point& copyme) {
x_ = copyme.x_;
y_ = copyme.y_;

}

void foo() {
Point x(1, 2); // invokes the 2-int-arguments constructor

Point y(x); // invokes the copy constructor
// could also be written as "Point y = x;"

}

 Initializer lists can also be used in copy constructors (preferred)

STYLE
TIP

Reference to object of same type

Point y didn’t exist before, a ctor must be called

Use a cctor since we are constructing based on x

4 9

14 16

CSE333, Summer 2020L11: C++ Constructor Insanity

When Do Copies Happen?

 The copy constructor is invoked if:
 You initialize an object from

another object of the same
type:

 You pass a non-reference
object as a value parameter
to a function:

 You return a non-reference
object value from a function:

18

void foo(Point x) { ... }

Point y; // default ctor
foo(y); // copy ctor

Point x; // default ctor
Point y(x); // copy ctor
Point z = y; // copy ctor

Point foo() {
Point y; // default ctor
return y; // copy ctor

}

CSE333, Summer 2020L11: C++ Constructor Insanity

Overloading the “=” Operator

 You can choose to define the “=” operator
 But there are some rules you should follow:

29

STYLE
TIP

Point& Point::operator=(const Point& rhs) {
if (this != &rhs) { // (1) always check against this
x_ = rhs.x_;
y_ = rhs.y_;

}
return *this; // (2) always return *this from op=

}

Point a; // default constructor
a = b = c; // works because = return *this
a = (b = c); // equiv. to above (= is right-associative)
(a = b) = c; // "works" because = returns a non-const

// reference to *this

Explicit equivalent:
a.operator=(b.operator=(c));

More important when data
members are Dynamic memory

Should be a reference
to *this to allow chaining

CSE333, Summer 2020L11: C++ Constructor Insanity

Destructors

 C++ has the notion of a destructor (dtor)
 Invoked automatically when a class instance is deleted, goes out

of scope, etc. (even via exceptions or other causes!)
 Place to put your cleanup code – free any dynamic storage or

other resources owned by the object
 Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

32

Point::~Point() { // destructor
// do any cleanup needed when a Point object goes away
// (nothing to do here since we have no dynamic resources)

}

tilde No parameters

When a destructor is invoked:
1. run destructor body
2. Call destructor of any data members

18 29

32

