
CSE333, Summer 2020L08: Makefiles & C++ Preview

Makefiles & C++ Preview
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
Ian Hsiao Allen Jung Sylvia Wang

CSE333, Summer 2020L08: Makefiles & C++ Preview

2

pollev.com/cse33320su

About how long did HW 1 take?

A. 0-3 Hours
B. 3-6 Hours
C. 6-9 Hours
D. 9-12 Hours
E. 12+ Hours
F. I didn’t submit (yet) / I prefer not to say

Side question:
What is your favourite programming language?

CSE333, Summer 2020L08: Makefiles & C++ Preview

Administrivia

❖ Exercise 7 posted yesterday, due Monday

▪ Read a directory and open/copy text files found there

• Copy exactly and only the bytes in the file(s). No extra output.

▪ Good warm-up for…

❖ Homework 2 due in two weeks (7/23)

▪ File system crawler, indexer, and search engine

▪ Spec and starter files will be pushed out tonight

▪ Most find it more work then HW1. Get started early!

3

CSE333, Summer 2020L08: Makefiles & C++ Preview

Lecture Outline

❖ Make and Build Tools

❖ Makefile Basics

❖ C++ Preview

4

CSE333, Summer 2020L08: Makefiles & C++ Preview

make

❖ make is a classic program for controlling what gets
(re)compiled and how
▪ Many other such programs exist (e.g. ant, maven, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts…

5

CSE333, Summer 2020L08: Makefiles & C++ Preview

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive: gcc -Wall -g -std=c11 -o widget foo.c bar.c baz.c

• Retype this every time: 😭

• Use up-arrow or history: 😐 (still retype after logout)

• Have an alias or bash script: 🙂

• Have a Makefile: 😊 (you’re ahead of us)

6

CSE333, Summer 2020L08: Makefiles & C++ Preview

“Real” Build Process

❖ On larger projects, you can’t or don’t want to have one big (set
of) command(s) that are all ran every time anything is changed.
When thinking on how to do things “smarter” consider:
1) It could be worse: If gcc didn’t combine steps for you, you’d need to

preprocess, compile, and link on your own (along with anything you
used to generate the C files)

2) Source files could have multiple outputs (e.g. javadoc). You may have
to type out the source file name(s) multiple times

3) You don’t want to have to document the build logic when you
distribute source code. It should be relatively simple for others to
build.

4) You don’t want to recompile everything every time you change
something (especially if you have 105-107 files of source code)

❖ A script can handle 1-3 (use a variable for filenames for 2), but
4 is trickier

7

CSE333, Summer 2020L08: Makefiles & C++ Preview

Recompilation Management

❖ The “theory” behind avoiding unnecessary compilation is
a dependency dag (directed, acyclic graph)

❖ To create a target 𝑡, you need sources 𝑠1, 𝑠2, … , 𝑠𝑛 and a
command 𝑐 that directly or indirectly uses the sources

▪ It 𝑡 is newer than every source (file-modification times), assume
there is no reason to rebuild it

▪ Recursive building: if some source 𝑠𝑖 is itself a target for some
other sources, see if it needs to be rebuilt…

▪ Cycles “make no sense”!

8

CSE333, Summer 2020L08: Makefiles & C++ Preview

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

9

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

NOTE: .c and .h files will always be

sources, never targets.

CSE333, Summer 2020L08: Makefiles & C++ Preview

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files

10

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Summer 2020L08: Makefiles & C++ Preview

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files

❖ Creating an executable (“linking”) depends on .o files and
archives
▪ Archives linked by -L<path> -l<name>

(e.g. -L. -lfoo to get libfoo.a from current directory)

11

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Summer 2020L08: Makefiles & C++ Preview

Theory Applied to C

❖ If one .c file changes, just need to recreate one .o file,
maybe a library, and re-link

❖ If a .h file changes, may need to rebuild more

❖ Many more possibilities!

12

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

1) Edit file

2) Recreate .o

3) Rebuild executable

CSE333, Summer 2020L08: Makefiles & C++ Preview

Lecture Outline

❖ Make and Build Tools

❖ Makefile Basics

❖ C++ Preview

13

CSE333, Summer 2020L08: Makefiles & C++ Preview

Using make

❖ Defaults:
▪ If no -f specified, use a file named Makefile in current dir

▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the makefile, then process it recursively

• If some source does not exist, then error

• If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

14

bash$ make -f <makefileName> target

CSE333, Summer 2020L08: Makefiles & C++ Preview

make Basics

❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, NOT SPACES

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:

15

foo.o: foo.c foo.h bar.h

gcc -Wall -o foo.o -c foo.c

target: sources

command← Tab →

CSE333, Summer 2020L08: Makefiles & C++ Preview

make Variables

❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or
whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

▪ Can also specify on the command line:
(e.g. make foo.o CC=clang CFLAGS=-g)

16

CC = gcc

CFLAGS = -Wall -std=c11

OBJFILES = foo.o bar.o baz.o

widget: $(OBJFILES)

$(CC) $(CFLAGS) -o widget $(OBJFILES)

CSE333, Summer 2020L08: Makefiles & C++ Preview

“Phony” Targets

❖ “Phony Target”: a make target whose command will never
create the target.

❖ clean is a convention

▪ Remove generated files to “start over” from just the source

▪ It’s “phony” because the target doesn’t exist and there are no
sources, but it works because:

• The target doesn’t exist, so it must be “remade” by running the
command

❖ Have several uses, such as: “all”

▪ Lists all of the “final products” as sources, so “make all” builds
everything.

17

OBJFILES = foo.o bar.o baz.o

clean:

rm $(OBJFILES) widget *~

CSE333, Summer 2020L08: Makefiles & C++ Preview

“all” Example

18

all: prog B.class someLib.a

notice no commands this time

prog: foo.o bar.o main.o

gcc –o prog foo.o bar.o main.o

B.class: B.java

javac B.java

someLib.a: foo.o baz.o

ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h

gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

“make all” check everything

1

2

3

4

5 6

7 8

CSE333, Summer 2020L08: Makefiles & C++ Preview

Makefile writing tips

❖ When creating a Makefile, draw the dependencies!!!!

❖ C Dependency Rules:
▪ .c and .h files are never targets, only sources.

▪ Each .c file will be compiled into a corresponding .o file

• Header files will be implicitly used via #include

▪ Executables will typically be built from one or more .o file

❖ Good Conventions:

▪ Include a ‘clean’ rule

▪ If you have more than one ‘final target’ have an ‘all’ rule

▪ Put your singular ‘final target’ or ‘all’ as the first target.

19

STYLE
TIP

STYLE
TIP

CSE333, Summer 2020L08: Makefiles & C++ Preview

Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

20

speak.cspeak.h shout.cshout.hmain.c

#include "speak.h"

#include "shout.h"

int main(int argc, char** argv) {…

#include "speak.h"

...

#include "speak.h"

#include "shout.h"

...

main.c

speak.c

shout.c

CSE333, Summer 2020L08: Makefiles & C++ Preview

Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

21

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk

talk: main.o speak.o shout.o

gcc $(CFLAGS) –o talk main.o speak.o shout.o

main.o: main.c speak.h shout.h

gcc $(CFLAGS) –c main.c

speak.o: speak.c speak.h

gcc $(CFLAGS) –c speak.c

shout.o: shout.c shout.h speak.h

gcc $(CFLAGS) –c shout.c

clean:

rm talk *.o

CSE333, Summer 2020L08: Makefiles & C++ Preview

Revenge of the Funny Characters

❖ Special variables:
▪ $@ for target name

▪ $^ for all sources

▪ $< for left-most source

▪ Lots more! – see the documentation

❖ Examples:

22

CC and CFLAGS defined above

widget: foo.o bar.o

$(CC) $(CFLAGS) -o $@ $^

foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c $<

CSE333, Summer 2020L08: Makefiles & C++ Preview

And more…

❖ There are a lot of “built-in” rules – see documentation

❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even
whole scripts!

❖ You can repeat target names to add more dependencies

❖ Often this stuff is more useful for reading makefiles than
writing your own (until some day…)

23

%.class: %.java

javac $< # we need the $< here

CSE333, Summer 2020L08: Makefiles & C++ Preview

On the topic of compilation…

❖ What’s the best compilation message?

❖ C will let you do many things, many of which you should
not do.

▪ This is an example of something you should NEVER do.

❖ You can write a program that runs and prints!

▪ Not portable
though…

24

bash$ gcc –g – Wall –std=c11 –o msg msg.c

msg.c:1:6: warning: 'main' is usually a

function [-Wmain]

const int main[] = {

-443987883, 440, 113408, -1922629632,

4149, 2013696, 84869120, 15544,

266023168, 1818576901, 1126199148, 857752915,

169947955, 1936269379, 1701344288, 1936024096,

-1878384268, 521126749, 1096237312, 1447165833

}

not_a_function.c

This is cool trivia, but

totally unnecessary to know.

Hopefully you enjoy it :)

Credit to this blog:
http://jroweboy.github.io/c/asm/2015/01/26/when-is-main-not-a-function.html

http://jroweboy.github.io/c/asm/2015/01/26/when-is-main-not-a-function.html

CSE333, Summer 2020L08: Makefiles & C++ Preview

Lecture Outline

❖ Make and Build Tools

❖ Makefile Basics

❖ C++ Preview

25

CSE333, Summer 2020L08: Makefiles & C++ Preview

Programming Terminology Review

❖ Encapsulation and Abstraction: Hiding implementation
details (restricting access) and associating behaviors
(methods) with data

❖ Polymorphism: The provision of a single interface to
entities of different types

❖ Generics: Algorithms written in terms of types to-be-
specified-later

26

CSE333, Summer 2020L08: Makefiles & C++ Preview

Encapsulation and Abstraction (C)

❖ Used header file conventions and the static specifier to
separate “private” functions, definitions, and constants
from “public”

❖ Used forward-declared structs and opaque pointers
(i.e. void*) to hide implementation-specific details

❖ Can’t associate behaviors with encapsulated state
▪ Functions that operate on a LinkedList not actually tied to

the struct

27

Really difficult to mimic – implemented primarily via
coding conventions

CSE333, Summer 2020L08: Makefiles & C++ Preview

Encapsulation and Abstraction (C++)

❖ Support for classes and objects!

▪ Public, private, and protected access specifiers

▪ Methods and instance variables ("this")

▪ (Multiple!) inheritance

❖ Polymorphism

▪ Static polymorphism: multiple functions or methods with the
same name, but different argument types (overloading)

• Works for all functions, not just class members

▪ Dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

28

CSE333, Summer 2020L08: Makefiles & C++ Preview

Generics (C)

❖ Generic linked list and hash table by using void* payload

❖ Function pointers to generalize different behavior for data
structures

▪ Comparisons, deallocation, pickling up state, etc.

29

Emulated generic data structures primarily by
disabling type system

CSE333, Summer 2020L08: Makefiles & C++ Preview

Generics (C++)

❖ Templates facilitate generic data types

▪ Parametric polymorphism: same idea as Java generics, but
different in details, particularly implementation

• A vector of ints: vector<int> x;

• A vector of floats: vector<float> x;

• A vector of (vectors of floats): vector<vector<float>> x;

❖ Specialized casts to increase type safety

30

CSE333, Summer 2020L08: Makefiles & C++ Preview

Namespaces (C)

❖ Names are global and visible everywhere
▪ Can use static to prevent a name from being visible outside a

source file (as close as C gets to “private”)

❖ Naming conventions help avoid collisions in the global
namespace
▪ e.g. LinkedList_Allocate, HTIterator_Next, etc.

31

Avoid collisions primarily via coding conventions

CSE333, Summer 2020L08: Makefiles & C++ Preview

Namespaces (C++)

❖ Explicit namespaces!
▪ The linked list module could define an “LL” namespace while the

hash table module could define an “HT” namespace

▪ Both modules could define an Iterator class

• One would be globally named LL::Iterator and the other would
be globally named HT::Iterator

❖ Classes also allow duplicate names without collisions

▪ Classes can also define their own pseudo-namespace, very similar
to Java static inner classes

32

CSE333, Summer 2020L08: Makefiles & C++ Preview

Standard Library (C)

❖ C does not provide any standard data structures

▪ We had to implement our own linked list and hash table

❖ Hopefully, you can use somebody else’s libraries

▪ But C’s lack of abstraction, encapsulation, and generics means
you’ll probably end up tweak them or tweak your code to use
them

33

YOU implement the data structures that you need

CSE333, Summer 2020L08: Makefiles & C++ Preview

Standard Library (C++)

❖ Generic containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

▪ And iterators for most of these

❖ A string class: hides the implementation of strings

❖ Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

❖ Generic algorithms: sort, filter, remove duplicates, etc.

34

CSE333, Summer 2020L08: Makefiles & C++ Preview

Error Handling (C)

❖ Error handling is a pain

❖ Define error codes and return them
▪ Either directly return or via a “global” like errno

▪ No type checking: does 1 mean EXIT_FAILURE or true?

❖ Customers and implementors need to constantly test
return values
▪ e.g. if a() calls b(), which calls c()

• a depends on b to propagate an error in c back to it

35

Error handling is a pain – mixture of coding
conventions and discipline

CSE333, Summer 2020L08: Makefiles & C++ Preview

Error Handling (C++)

❖ Supports exceptions!
▪ try / throw / catch

▪ If used with discipline, can simplify error processing

▪ If used carelessly, can complicate memory management

• Consider: a() calls b(), which calls c()

– If c() throws an exception that b() doesn’t catch, you might not get a
chance to clean up resources allocated inside b()

❖ We will largely avoid in 333

▪ You still benefit from having more interpretable errors!

▪ But much C++ code still needs to work with C & old C++ libraries,
so still uses return codes, exit(), etc.

36

CSE333, Summer 2020L08: Makefiles & C++ Preview

Some Tasks Still Hurt in C++

❖ Memory management

▪ C++ has no garbage collector

• You still have to manage memory allocation & deallocation and track

• It’s still possible to have leaks, double frees, and so on

▪ But there are some things that help

• “Smart pointers”

– Classes that encapsulate pointers and track reference counts

– Deallocate memory when the reference count goes to zero

• C++’s constructors and destructors permit a pattern known as
“Resource Allocation Is Initialization” (RAII)

– Useful for releasing memory, locks, database transactions, etc.

37

CSE333, Summer 2020L08: Makefiles & C++ Preview

Some Tasks Still Hurt in C++

❖ C++ doesn’t guarantee type or memory safety

▪ You can still:

• Forcibly cast pointers between incompatible types

• Walk off the end of an array and smash memory

• Have dangling pointers

• Conjure up a pointer to an arbitrary address of your choosing

38

CSE333, Summer 2020L08: Makefiles & C++ Preview

How to Think About C++

39

Set of styles
and ways to

use C++

Set of styles
and ways to

use C

Good styles
and robust
engineering

practices

Style
guides

CSE333, Summer 2020L08: Makefiles & C++ Preview

Or…

40

In the hands of a
disciplined programmer,

C++ is a powerful tool

But if you’re not so
disciplined about how you

use C++…

