
CSE333, Summer 2020L07: POSIX I/O, Syscalls

Reading from a File
 ssize_t read(int fd, void* buf, size_t count);

 Returns the number of bytes read
• Might be fewer bytes than you requested (!!!)
• Returns 0 if you’re already at the end-of-file
• Returns -1 on error (and sets errno)
• Advances forward in the file by number

of bytes read

 There are some surprising error modes (check errno)
• EBADF: bad file descriptor
• EFAULT: output buffer is not a valid address
• EINTR: read was interrupted, please try again (ARGH!!!! 😤😠)
• And many others…

10

ssize_t read(int fd, void* buf, size_t count);

Number of bytes

Defined
in

errno.h

Stores read
result in buf

errno
==

EINTR

Return Value

0-1 > 0

read()

other
errno

==
count

<
count

You’re
done!

Keep
reading

Error msg,
exit

Try
again!

eof

CSE333, Summer 2020L07: POSIX I/O, Syscalls

One way to read() 𝑛 bytes

 Let’s say we want to read ‘n’ bytes. Which is the correct
completion of the blank below?

11

char* buf = ...; // buffer of size n
int bytes_left = n;
int result; // result of read()

while (bytes_left > 0) {
result = read(fd, ______, bytes_left);
if (result == -1) {
if (errno != EINTR) {
// a real error happened,
// so return an error result

}
// EINTR happened,
// so do nothing and try again
continue;

}
bytes_left -= result;

}

A. buf

B. buf + bytes_left

C. buf + bytes_left - n

D. buf + n - bytes_left

E. We’re lost…Keyword that jumps
to beginning of loop

pollev.com/cse33320su

CSE333, Summer 2020L07: POSIX I/O, Syscalls

OS: Abstraction Provider

 The OS is the “layer below”
 A module that your program can call (with system calls)
 Provides a powerful OS API – POSIX, Windows, etc.

18

a process running
your program

OS

OS
API

fil
e

sy
st

em

ne
tw

or
k

st
ac

k

vi
rt

ua
l m

em
or

y

pr
oc

es
s m

gm
t.

…
 e

tc
…

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CSE333, Summer 2020L07: POSIX I/O, Syscalls

OS: Protection System

 OS isolates process from each other
 But permits controlled sharing between them

• Through shared name spaces (e.g. file names)

 OS isolates itself from processes
 Must prevent processes from accessing the

hardware directly

 OS is allowed to access the hardware
 User-level processes run with the CPU

(processor) in unprivileged mode
 The OS runs with the CPU in privileged mode
 User-level processes invoke system calls to

safely enter the OS

19

OS
(trusted)

HW (trusted)

Pr
oc

es
s A

(u
nt

ru
st

ed
)

Pr
oc

es
s B

(u
nt

ru
st

ed
)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

There are special cases
where “super-user”
permissions granted

10 11

18 19

