UNIVERSITY of WASHINGTON

L07: POSIX 1/0, Syscalls

CSE333, Summer 2020

Reading from a File

Stores read

result in buf Nunber of bytes

':~[§size7t read(int fd, void* buf, size t count);]

= Returns the number of bytes read

.

Might be fewer bytes than you requested (!!!)
Returns 0 if you're already at the end-of-file

Return Value

.

Returns -1 on error (and sets errno)

.

Advances forward in the file by number
of bytes read ™y

other ==
errno count.

<
count.

Error msg, Youre Yeep

dovel reading

= There are some surprising error modes (check errno)
« EBADF': bad file descriptor
Defined) i .
" . EFAULT: output bufferis not a valid address
errnoln « EINTR: read was interrupted, please try again (ARGH!!!! @)
- And many others...

10

10

WASHINGTON L07: POSIX 1/, Syscalls

CSE333, Summer 2020

0S: Abstraction Provider

« The OS is the “layer below”
= A module that your program can call (with system calls)
= Provides a powerful OS APl — POSIX, Windows, etc.

File System
« open(), read(), write(), close(), ...

a process running
your program
Network Stack
* connect(), listen(), read(), write(), ...

Virtual Memory
* brk(), shm_open(), ...

Process Management
« fork(), wait(), nice(), ...

£
(]
=
%
>
7
9
=

network stack
virtual memory
process mgmt.

... etc ...

18

W UNIVERSITY of WASHINGTON L07: POSIX 1/, Syscalls

Q Poll Everywhere

completion of the blank below?

(char* buf = ...; // buffer of size n
int bytes_left = n;
int result; // result of read()

while (bytes_left > 0) {
result = read(fd, , bytes_left);
if (result == -1) {
if (errno != EINTR) {
// a real error happened,
// so return an error result
}
// EINTR happened,
// so do nothing and try again
continue; Keywordthatjumps E'
} +o beginning of loop

bytes left -= result;
}

(. J

o 0 v »

CSE333, Summer 2020

pollev.com/cse33320su

« Let’s say we want to read ‘n’ bytes. Which is the correct

buf + bytes_left
buf + bytes_left - n
buf + n - bytes_left

We’'re lost...

11

UNIVERSITY o HINGTON

L07: POSIX I/0, Syscalls

OS: Protection System

« OSisolates process from each other
® But permits controlled sharing between them
« Through shared name spaces (e.g. file names)

« OSisolates itself from processes

® Must prevent processes from accessing the
hardware directly

OS is allowed to access the hardware

= User-level processes run with the CPU
(processor) in unprivileged mode

® The OS runs with the CPU in privileged mode

= User-level processes invoke system calls to
safely enter the OS

CSE333, Summer 2020

There are special cases
where “super-user”
permissions granted

Process A
Process B
(untrusted)
Process C
(untrusted)
Process D

=) =
2 2
o

g g
=

= =)
e £

oS
(trusted)

HW (trusted)

19

