W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

CPP Wrap-Up, Linking, File 1/0
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
lan Hsiao Allen Jung Sylvia Wang

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

About how long did Exercise 4 take?

"Moo wR

1-2 Hours
2-3 Hours
3-4 Hours
4+ Hours
| didn’t submit / | prefer not to say

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Administrivia

o0

o0

o0

o0

Exercise 4 gradescope broke yesterday >:|

® Check that your autograder ran without error. Can resubmit till 11:59 pm tonight

Exercise 5 posted Thursday, due Wednesday
Exercise 6 posted today, also due Wednesday

Homework 1 due Thursday (7/9)

= Watch that HashTable doesn’t violate the modularity of
LinkedList

= Watch for pointer to local (stack) variables
" Draw memory diagrams!

= Use a debugger (e.g. gdb) and valgrind
= Please leave “STEP #” markers for graders!
" late days: don’ttag hwl-final until you are really ready

w UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Lecture Outline

» Preprocessor Tricks
+ Visibility of Symbols

" extern, static

» File 1/O with the C standard library
+ C Stream Buffering

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

[]
STY.LE
Header Guards £y
\[4
+ A standard C Preprocessor trick to deal with this
= Uses macro definition (#define) in combination with
conditional compilation (# 1 fndef and #endi f)
(#ifndef PAIR H 1 (#4ifndef UTIL H_ h
#define PAIR H #define UTIL H
struct pair { #include "pair.h"
int a, b;
s // a useful function

struct pair* make pair(int a, int b);
#endif // _PAIR H

#fendif // UTIL H
\ J _ — - Y,

pair.h util.h

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

[
. STY.LE
Other Preprocessor Tricks £y
\[4
. o . V24
+ A way to deal with “magic constants
(Y [#define BUFSIZE 1000 R
#define PI 3.14159265359
int globalbuffer[1000]; int globalbuffer [BUFSIZE];
void ecircalc(float rad, volid eircalc (float rad,
float* circumf, float* circumf,
float* area) { float* area) {
*circumf = rad * 2.0 * 3.1415; *circumf = rad * 2.0 * PI;
*area = rad * 3.1415 * 3.1415; *area = rad * PI * PI;
}
L) U Y,
Bad code Better code

(littered with magic constants)

YW UNIVERSITY of WASHINGTON

Macros

LO6: CPP Wrap-Up, Linking, File I/O

« YOU can pass arguments to macros

[#define ODD (x) 2

((x) %
void foo () {
1f (ODD(5))
printf ("5 is odd!\n");

= 0

\

Cpp
ﬁ

7

J

.

void foo () {
1t ((9) 2 1=0))
printf ("5 is odd!\n");

s

}

+» Beware of operator precedence issues!

" C Preprocessor is just text replacement!

= Use parentheses

[(4define ODD(x) ((x) S
#define WEIRD(x) x %

2 !
=

2

ODD (5 + 1);

WEIRD (5 + 1);

0

0)

\

:2EE;’

0); 6%2!1=0

5+11=0

CSE333, Summer 2020

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Conditional Compilation

% You can change what gets compiled

" |n this example, #define TRACE before #ifdef toinclude
debug printfsin compiled code

(#ifdef TRACE

#define ENTER(f) printf ("Entering %$s\n", f);
fdefine EXIT(f) printf("Exiting %$s\n", f);
#else

#define ENTER(f)

#fdefine EXIT (f)

#endif

// print n

void pr(int n) {
ENTER ("pr") ;
printf ("\n =
EXIT ("pr") ;

\J y
ifdef.c

$d\n", n);

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Defining Symbols

+ Besides #definesin the code, preprocessor values can
be given as part of the gcc command:

[bash$ gcc -Wall -g -DTRACE -o 1fdef i1fdef.c]

+ assert can be controlled the same way — defining NDEBUG
causes assert to expand to “empty”

" |t'samacro—see assert.h

[bash$ gcc —-Wall -g -DNDEBUG -o faster useassert.c]

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

o Poll Eve ryWhere pollev.com/cse33320su

+» What will happen when we try to compile and run?

bash$ gcc -Wall -DFOO -DBAR -o condcomp condcomp.c
bash$./condcomp

A.
" 1) o :)
B. Output 334 #include <stdio.h>
#1ifdef FOO
C. Compiler message #define EVEN(x) ! (x%2)
#fendif
about EVEN #1ifndef DBAR
. #define BAZ 333
D. Compiler message fendif
abOUt BAZ int main(int argc, char** argv) {
int 1 = EVEN(42) + BAZ;
E. We're lost... printf ("sd\n", 1) ;
return 0;
& Y

10

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

o Poll Eve ryWhere pollev.com/cse33320su

+» What will happen when we try to compile and run?

bash$ gcc -Wall —qFOO —DEAR -0 condcomp condcomp.cC
bash$./condcomp Defines FOO and BAR

A.
1l 1 (| | \
B. Output 334 #include <stdio.h>
#ifdef FOO <«- +true
C. Comp“er message #tdefine EVEN (x) ! (x%2)
#fendif
about EVEN #ifndef DBAR <- true
. #define BAZ 333
D. Compiler message fendif
[(4202)
abOUt BAZ int main(int argc, char** argv) {
int 1 =-FNENL2) + BAZ-
E. We're lost... printf ("sd\a", 1) ; 333
return 0;
\ Y

11

w UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Lecture Outline

» Preprocessor Tricks
+ Visibility of Symbols

" extern, static

» File 1/O with the C standard library
+ C Stream Buffering

12

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Namespace Problem

+ If we define a global variable named “counter” in one C
file, is it visible in a different C file in the same program?

" Yes, if you use external linkage
- The name “counter” refers to the same variable in both files
- The variable is defined in one file and declared in the other(s)
- When the program is linked, the symbol resolves to one location

"= No, if you use internal linkage
- The name “counter” refers to a different variable in each file
- The variable must be defined in each file
- When the program is linked, the symbols resolve to two locations

13

YW UNIVERSITY of WASHINGTON

External Linkage

LO6: CPP Wrap-Up, Linking, File I/O

CSE333, Summer 2020

stdout:
1

2
2

extern makes a declaration of something externally-
visible
= Works slightly differently for variables and functions...

(#include <stdio.h>

// A global variable,
// 1nitialized here in foo.c.
// It has external linkage by

// default.
int counter

2

int main(int argc,
printf ("%d\n",
bar () ;
printf ("%d\n",
return O;

defined and

char** argv)
counter) ;

counter) ;

(#include <stdio.h>

// "counter" is defined and
// initialized in foo.c.

// Here, we declare it, and
// specify external linkage
// by using the extern specifier.
extern int counter;

volid bar () {

counter++;
printf (" (b): counter = %d\n",

counter) ;

!}

bar.c

YW UNIVERSITY of WASHINGTON

LO6: CPP Wrap-Up, Linking, File I/O

CSE333, Summer 2020

Internal Linkage

stdout:

+ static (inthe global context) restricts a definition to

visibility within that file

(#include <stdio.h> R (#include <stdio.h> A
// A global variable, defined and // A global variable, defined and
// initialized here in foo.c. // initialized here in bar.c.

// We force internal linkage by // We force internal linkage by
// using the static specifier. // using the static specifier.
static int counter = 1 static int counter = 101
int main(int argc, char** argv) { void bar () {
printf ("$d\n", counter); counter++;
bar () ; printf (" (b) : counter = %d\n",
printf ("%d\n", counter); counter) ;
return 0O; }
) J y
foo.c bar.c

15

WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0

CSE333, Summer 2020

W UNIVERSITY of

Function Visibility

bar.c

main.c

(// By using the static specifier, we are indicating b
// that foo () should have internal linkage. Other
// .c files cannot see or invoke foo/().
static int foo(int x) {
return x*3 + 1;
}
// Bar is "extern" by default. Thus, other .c files
// could declare our bar () and invoke 1it.
int bar(int x) {
return 2*foo(x); //bar() can call foo() since they are in the same file!

L) y,
(#include <stdio.h> R
extern int bar(int x); // "extern" is default, usually omit

// not explicitly needed for functions, does indicate definition is elsewhere
int main(int argc, char** argv) {
printf ("%d\n", bar(5)):
return 0O;
W y

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

]

élﬁj
=
m

—
-<‘-U’"

Linkage Issues

+ Every global (variables and functions) is extern by
default

= Unless you add the st at ic specifier, if some other module uses
the same name, you’ll end up with a collision!

- Best case: compiler (or linker) error ©

- Worst case: stomp all over each other

) M .
+ It’s good practice to: s is done in ex5
" Use static to “defend” your globals «—— aud is something you

- Hide your private stuff! should do in the HW's

— This can include both private variables and private “helper” functions
= Place external declarations in a module’s header file

- Header is the public specification

17

YW UNIVERSITY of WASHINGTON

static_extent.c

LO6: CPP Wrap-Up, Linking, File I/O

Static Confusion...

CSE333, Summer 2020

« C has another use for the word “static”: to create a

persistent /ocal variable

" The storage for that variable is allocated when the program loads,

in either the .data or .bss segment

= Retains its value across multiple function invocations

(;oid foo () {

static int count = 1; // value persists
printf ("foo has been called %d times\n",

}

void bar () {

int count = 1; // initialized every time
printf ("bar has been called %d times\n",

}

int main(int argc, char** argv) {
foo(); foo(); bar(); bar();
\H Himes 2 times 1 times 1 times

return 0;

count++) ;

count++) ;

\

18

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Additional C Topics

+ Teach yourself!

" man pages are your friend!
= String library functions in the C standard library
« #include <string.h>
— strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), ...
« #include <stdlib.h>or#include <stdio.h>
— atoi(), atof(), sprint(), sscanf()

"= How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

" unions and what they are good for

= enums and what they are good for

" Pre- and post-increment/decrement

®= Harder: the meaning of the “volatile” storage class

19

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Lecture Outline

+ Preprocessor Tricks
+ Visibility of Symbols
" extern, static
+ File 1/O with the C standard library
+ C Stream Buffering

[This is essential material for the next part of the project (hw2)!]

20

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

File 1/O

+» We'll start by using C’s standard library
" These functions are part of glibc on Linux
" They are implemented using Linux system calls (POSIX)

+» C’'s stdio defines the notion of a stream
*A sequence of characters that flows to and from a device
- Can be either text or binary; Linux does not distinguish
" |s buffered by default; 1 ibc reads ahead of your program
= Three streams provided by default: stdin, stdout, stderr
« You can open additional streams to read and write to files

= Cstreams are manipulated with a FILE* pointer, which is
defined in stdio.h

21

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

]

(Vs]
~
=
m

C Stream Functions (1 of 2)

=

“‘U’

+» Some stream functions (complete list in stdio.h):
NULL ou error, check for +his!

ILE* fopen(filename, mode);]

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);]

 Closes the specified stream (and file). ~— Sv‘o“[d always close a
file when dove

-[int fprintf (stream, format, ...);]

- Writes a formatted C string
— printf (...); isequivalentto fprintf (stdout, ...);

-[int fscanf (stream, format, ...);]

- Reads data and stores data matching the format string

22

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

C Stream Functions (2 of 2)

+» Some stream functions (complete list in stdio.h):

-[FILE* fopen (filename, mode);]

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);]

+ Closes the specified stream (and file) will read/write size*connt
number of bytes total

K A |
size t fwrite(ptr, size, count, stream);]

Peturne - Writes an array of count elements of size bytes from ptr to stream

number of
elements m
read/written

size t fread(ptr, size, count, stream);]

- Reads an array of count elements of size bytes from stream to ptr

23

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

C Stream Error Checking/Handling

+» Some error functions (complete list in stdio.h):

g [void perror (message) ;]

« Prints message followed by an error message related to erxno to

stderr
Global var

-[int ferror(stream);]

- Checks if the error indicator associated with the specified stream is
set

K [int clearerr (stream) ;]

- Resets error and EOF indicators for the specified stream

Be sure to check for errors whew ou do File T/O!

24

C Streams Example [oo

makes a copy of a file

cp_example.c

r#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char** argv) {
FILE *fin, *fout; « Stream variables

char readbuf [READBUFSIZE]; ——— Buffer, size arbitrary
size t readlen; /

}

// Open the input file ‘(,_Opwﬁam@mRM@ﬁm+ommd

fin = fopen(argv([1l], "rb"); // "rb" -> read, binary mode
if (fin == NULL) {

perror ("fopen for read failed"); S ‘
return EXIT FAILURE; < Ifit failed. Print error info

if (argc != 3) { &—— Crashifnot enough args
fprintf (stderr, "usage: ./cp example infile outfile\n");
return EXIT FAILURE; // defined in stdlib.h

~

w UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

25

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

C Streams Example

cp_example.c

rint main (int argc, char** argv) {
// previous slide’s code

// Open the output file — Opeu file to read, create i+ if it doesw’t exist
fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode
if (fout == NULL) {

perror ("fopen for write failed");

fclose (fin) ; ——— Couldn’t open file. Clean up other file we opened.

return EXIT FAILURE; Be sure to always close open files ANY time you exit

} Readlen is number of bytes actually read
// Read frogf the file, write to fout

while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0)

1f (fwrite (readbuf, Tj>r£ﬁdlen, fout) < readlen) {
perror ("fwrite failed");

fclose (fin) ; Read +ill end of file reached
fclose (fout) ;
return EXIT FAILURE; @ cecdlen=44
— ceodlen=128
} for file of size 300 byles, %%§Z§;$T7ZZ%217E%QH.
} fread alled i dines : o @ ceodlen = 125 300

// next slide’s code

{

~

26

w UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

C Streams Example

cp_example.c

D

rint main (int argc, char** argv) {
// two slides ago’s code
// previous slide’s code

// Test to see 1f we encountered an error while reading
if (ferror(fin)) { <——— Check for error when readivg

perror ("fread failed");

fclose (fin);

fclose (fout) ;

return EXIT FAILURE;

}

fclose (fin); (Close files whew donelll
fclose (fout) ;

return EXIT SUCCESS;

27

w UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Lecture Outline

» Preprocessor Tricks
+ Visibility of Symbols

" extern, static

» File 1/0 with the C standard library
+ C Stream Buffering

28

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Buffering

+» By default, stdio uses buffering for streams:

= Data written by £fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= As some point, the buffer will be “drained” into the destination:
- When you explicitly call ££1ush () on the stream

- When the buffer size is exceeded (often 1024 or 4096 bytes)

- For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

-« Whenyou call £fclose () on the stream

- When your process exits gracefully (exit () or return from
main())

29

w UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Buffering Example buffered hi.c

[int main (int argc, char** argv) {
==y FILE* fout = fopen("test.txt", "wb");

"\

// write "hi" one char at a time
meplp i (fwrite ("h", sizeof (char), 1, fout) < 1) { C stdio buffer
perror ("fwrite failed"); h)

fclose (fout) ; S
return EXIT FAILURE;

}

= if (fwrite("i", sizeof (char), 1, fout) < 1) {
perror ("fwrite failed"); test.txt (disk)
fclose (fout) ;)
return EXIT FAILURE; h i

}

— fclose (fout) ;
return EXIT SUCCESS;

}

30

w UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

No Buffering Example

rint main (int argc, char** argv) {

3 FILE* fout = fopen("test.txt", "wb");
setbuf (fout, NULL); // turn off buffering

unbuffered_hi.c

~

// write "hi" one char at a time C stdio buffer
m—p i (fwrite ("h", sizeof (char), 1, fout) < 1) { /ﬂ—
perror ("fwrite failed"); ——]

fclose (fout) ;
return EXIT_FAILURE;

}

—pp if (fwrite("i", sizeof(char), 1, fout) < 1) { test.txt (disk)
perror ("fwrite failed"); h i

fclose (fout) ;
return EXIT_FAILURE;

}

=g fclose (fout);
return EXIT SUCCESS;

}

31

w UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0

Why Buffer?

«» Performance — avoid disk accesses

" Group many small writes

|
into a single larger write

\

s

aon Dm0 \
input EER 1] ———=> ovhvt |, XKeach
E (§) bukler , Siream
individval J -
writgs P

N\

CSE333, Summer 2020

= Disk Latency = @ @ @

(Jeff Dean from LADIS '09)

Numbers are ont of date, but
order of magnitude is same

I+ takes a really long time
to oo all the way to diskll!

Numbers Everyone Should Know

L1l cache reference
Branch mispredict
L2 cache reference
Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy 3
Send 2K bytes over 1 Gbps network 2105
Read 1 MB sequentially from memory 250,
Round trip within same datacenter 500,
Disk seek 10,000,
Read 1 MB sequentially from disk 20,000,
Send packet CA->Netherlands->CA 150,000,

0.5 ns

5 ns

25 ns
100 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns
000 ns

« Convenience — nicer API
= We'll compare C's £read ()

with POSIX’s read ()

32

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Why NOT Buffer?

+ Reliability — the buffer needs to be flushed

" |oss of computer power = loss of data

= “Completion” of a write (i.e. return from £fwrite ()) does not
mean the data has actually been written

- What if you signal another process to read the file you just wrote to?

+» Performance — buffering takes time

= Copying data into the stdio buffer consumes CPU cycles and
memory bandwidth

= Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

+» When is buffering faster?|Slower?
Many swmall writes Large writes
Or ovly writine 4 lit+e |

33

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Disabling C’s Buffering

» Explicitly turn off with setbuf (stream, NULL)

+ Use POSIX APIs instead of C’s

" No buffering is done at the user level
= We'll see these soon

» But... what about the layers below?

" The OS caches disk reads and writes in the file system buffer
cache

= Disk controllers have caches too!

34

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File 1/0 CSE333, Summer 2020

Extra Exercise #1

+» Modify the linked list code from Lecture 4 Extra
Exercise #3

= Add static declarations to any internal functions you implemented
in linkedlist.h

= Add a header guard to the header file

35

W UNIVERSITY of WASHINGTON LO6: CPP Wrap-Up, Linking, File I/O

Extra Exercise #2

+» Write a program that:

CSE333, Summer 2020

= Uses argc/argv to receive the name of a text file

= Reads the contents of the file a line at a time

" Parses each line, converting text intoa uint32 t

" Builds an array of the parsed uint32 t’s

= Sorts the array
= Prints the sorted array to stdout

« Hint: use man to read about
getline, sscanf, reallogc,
and gsort

bash$ cat in.txt
1213

3231

000005

52

bash$./extral in.txt
o)

52

1213

3231

bash$

36

YW UNIVERSITY of WASHINGTON

Extra Exercise #3

+» Write a program that:

LO6: CPP Wrap-Up, Linking, File I/O

" |Loops forever; in each loop:

Prompt the user to
input a filename

Reads a filename
from stdin

Opens and reads
the file

Prints its contents
to stdout in the format shown:

00000000
00000010
00000020
00000030
00000040
00000050

00000060
00000070
00000080
00000090
000000a0

. etc ...

Use man to read about fgets

Or, if you’re more courageous, try man
libreadline.a and Google to learn how to link to it

CSE333, Summer 2020

3 readline tolearn about

