
CSE333, Summer 2020L05: Data Structures, Modules

Using a Generic Linked List

 Type casting needed to deal with void* (raw address)
 Before pushing, need to convert to void*

 Convert back to data type when accessing

25

typedef struct node_st {
void* element;
struct node_st* next;

} Node;

Node* Push(Node* head, void* e); // assume last slide’s code

int main(int argc, char** argv) {
char* hello = "Hi there!";
char* goodbye = "Bye bye.";
Node* list = NULL;

list = Push(list, (void*) hello);
list = Push(list, (void*) goodbye);
printf("payload: '%s'\n", (char*) ((list->next)->element));
return 0;

} manual_list_void.c

CSE333, Summer 2020L05: Data Structures, Modules

C Header Files

 Header: a file whose only purpose is to be #include’d
 Generally has a filename .h extension

 Holds the variables, types, and function prototype declarations
that make up the interface to a module

 Main Idea:
 Every name.c is intended to be a module that has a name.h

 name.h declares the interface to that module

 Other modules can use name by #include-ing name.h
• They should assume as little as possible about the implementation in
name.c

30

CSE333, Summer 2020L05: Data Structures, Modules

C Module Conventions (1 of 2)
 File contents:
 .h files only contain declarations, never definitions

 .c files never contain prototype declarations for functions that are
intended to be exported through the module interface

 Public-facing functions are ModuleName_functionname() and
take a pointer to “this” as their first argument

 Including:
 NEVER #include a .c file – only #include.h files

 #include all of headers you reference, even if another header
(transitively) includes some of them

 Compiling:
 Any .c file with an associated .h file should be able to be compiled into

a .o file
• The .c file should #include the .h file; the compiler will check definitions

and declarations for consistency
31

STYLE
TIP

CSE333, Summer 2020L05: Data Structures, Modules

C Module Conventions (2 of 2)

 Commenting:
 If a function is declared in a header file (.h) and defined in a C file

(.c), the header needs full documentation because it is the public
specification
• Don’t copy-paste the comment into the C file (don’t want two copies

that can get out of sync)

 If prototype and implementation are in the same C file:
• School of thought #1: Full comment on the prototype at the top of

the file, no comment (or “declared above”) on code

• School of thought #2: Prototype is for the compiler and doesn’t need
comment; comment the code to keep them together

32

e.g. 333
project code

STYLE
TIP

25 30

31 32

CSE333, Summer 2020L05: Data Structures, Modules

Preprocessor Tricks: Header Guards

 A standard C Preprocessor trick to deal with this
 Uses macro definition (#define) in combination with

conditional compilation (#ifndef and #endif)

49

#ifndef PAIR_H_
#define PAIR_H_

struct pair {
int a, b;

};

#endif // PAIR_H_

#ifndef UTIL_H_
#define UTIL_H_

#include "pair.h"

// a useful function
struct pair* make_pair(int a, int b);

#endif // UTIL_H_

pair.h util.h

#include "pair.h"
#include "util.h"

int main(int argc, char** argv) {
// do stuff here

foo.c

STYLE
TIP

Pre-processor state

CSE333, Summer 2020L05: Data Structures, Modules

Preprocessor Tricks: Constants

 A way to deal with “magic constants”

61

int globalbuffer[1000];

void circalc(float rad,
float* circumf,
float* area) {

*circumf = rad * 2.0 * 3.1415;
*area = rad * 3.1415 * 3.1415;

}

#define BUFSIZE 1000
#define PI 3.14159265359

int globalbuffer[BUFSIZE];

void circalc(float rad,
float* circumf,
float* area) {

*circumf = rad * 2.0 * PI;
*area = rad * PI * PI;

}

Bad code
(littered with magic constants)

Better code

STYLE
TIP

49 61

