L05: Data Structures, Modules CSE333, Summer 2020

Using a Generic Linked List

« Type casting needed to deal with void* (raw address)
= Before pushing, need to convert to void*

= Convert back to data type when accessing

(ypedef struct node_st { B

void* element;
ruct node_st* next;

Node* Push (Node* head, void* e); // assume last slide’s code

int main(int argc, char** argv) {

list = Push(list, (void*) hello);
list = Push(list, (void*) goodbye) ;
printf ("payload: '%s'\n", (char*) ((list->next)->element));

} manual_list_void.c]
S)

25

UNIVERSITY of WASHINGTON L05: Data Structures, Modules CSE333, Summer 2020

4
£
m

C Module Conventions (1 of 2) ®

= File contents:

=
~v

= _hfiles only contain declarations, never definitions

= cfiles never contain prototype declarations for functions that are
intended to be exported through the module interface

= Public-facing functions are ModuleName functionname () and
take a pointer to “this” as their first argument
« Including:
" NEVER #includea .cfile—only #include .hfiles
= #include all of headers you reference, even if another header
(transitively) includes some of them
« Compiling:
= Any . c file with an associated . h file should be able to be compiled into
a .ofile

« The . c file should #include the .h file; the compiler will check definitions
and declarations for consistency

31

UNIVERSITY of NGTO L05: Data Structures, Modules CSE333, Summer 2020

C Header Files

« Header: a file whose only purposeis to be #include’d
= Generally has a filename . h extension

" Holds the variables, types, and function prototype declarations
that make up the interface to a module

« Main Idea:
® Every name. c is intended to be a module that has a name . h
" name.h declares the interface to that module

= Other modules can use name by #incluc

-ing name . h

+ They should assume as little as possible about the implementation in
name.c

30

30

UNIVERSITY of WASHINGTON L05: Data Structures, Modules CSE333, Summer 2020

|
. STYLE
C Module Conventions (2 of 2) ﬁw*
« Commenting:
= |f a function is declared in a header file (. h) and defined in a C file
(. c), the header needs full documentation because it is the public
specification
+ Don’t copy-paste the comment into the C file (don’t want two copies
that can get out of sync)
= |f prototype and implementation are in the same C file:

+ School of thought #1: Full comment on the prototype at the top of
the file, no comment (or “declared above”) on code

« School of thought #2: Prototype is for the compiler and doesn’t need
comment; comment the code to keep them together

e.g. 333
project code

32

32

UNIVERSITY of WASHINGTON

L05: Data Structures, Modules

CSE333, Summer 2020

Preprocessor Tricks: Header Guards

9
=]
m

=~

-
o

« A standard C Preprocessor trick to deal with this pre-processor stat

= Uses macro definition (#def ine) in combination with
conditional compilation (# 1 fnc i

= and #endif)

ndef PAIR H
Jefine PAIR H

struct pair {

#include "pair
int a, b;

}: // a useful function
struct pair* make pair(int a, int b);
#endif // PAIR H
ndif // UT H_
pair.h util.h
foo.c
1u 'pair.k
clt " 1%
int main(int argc, char** argv) { 49

UNIVERSITY of WAS

L05: Data Structures, Modules

Preprocessor Tricks: Constants

« A way to deal with “magic constants”

CSE333, Summer 2020

9
"R
m

=~

=
~wo

() . BUFSIZE 10)
" . PI 3. 592 ¢
int globalbuffer[1000]; int globalbuffer [BUFSIZE];
void circalc(float rad, void ecircalc(float rad,
float* circumf, float* circumf,
float* area) { float* area) {
*circumf rad * 2.0 * 3.1415; *circumf = rad * * PI;
*area rad * 3.1415 * 3.1415; *area rad * PI * PI;
}
L J U J
Bad code

Better code
(littered with magic constants)

61

61

