
CSE333, Summer 2020L04: The Heap, Structs

malloc()

 General usage:

 malloc allocates a block of memory of the requested
size
 Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed! // Check this!

 You should assume that the memory initially contains garbage
 You’ll typically use sizeof to calculate the size you need

var = (type*) malloc(size in bytes)

// allocate a 10-float array
float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL) {
return errcode;

}
... // do stuff with arr

13

STYLE
TIP

CSE333, Summer 2020L04: The Heap, Structs

free()

 Usage: free(pointer);

 Deallocates the memory pointed-to by the pointer
 Pointer must point to the first byte of heap-allocated memory (i.e.

something previously returned by malloc or calloc)

 Freed memory becomes eligible for future allocation
 does nothing.

 The bits in the pointer are not changed by calling free
• Defensive programming: can set pointer to NULL after freeing it

15

free(pointer);

float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL)
return errcode;

... // do stuff with arr
free(arr);
arr = NULL; // OPTIONAL

DEBUG
TIP

free(NULL);

CSE333, Summer 2020L04: The Heap, Structs

 Which line below is first guaranteed to cause an error?

A. Line 1

B. Line 4

C. Line 6

D. Line 7

E. We’re lost…

28

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int a[2];
int* b = malloc(2*sizeof(int));
int* c;

a[2] = 5;
b[0] += 2;
c = b+3;
free(&(a[0]));
free(b);
free(b);
b[0] = 5;

return 0;
}

1
2
3
4
5
6
7

pollev.com/cse33320su

CSE333, Summer 2020L04: The Heap, Structs

typedef

 Generic format: typedef type name;

 Allows you to define new data type names/synonyms
 Both type and name are usable and refer to the same type

 Be careful with pointers – * before name is part of type!

44

typedef type name;

// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for "char*"
typedef char *str;

// make "Point" a synonym for "struct point_st { ... }“
// make "PointPtr" a synonym for "struct point_st*"
typedef struct point_st {
superlong x;
superlong y;

} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};

13 15

28 44

