YW UNIVERSITY of WASHINGTON LO4: The Heap, Structs

The Heap and Structs
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa
lan Hsiao Allen Jung

Kyrie Dowling
Sylvia Wang

CSE333, Summer 2020

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

@ Poll Eve ryWhere pollev.com/cse33320su

About how long did Exercise 2 take?

nmoo®p

1-2 Hours
2-3 Hours
3-4 Hours
4+ Hours
| didn’t submit / | prefer not to say

w UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Administrivia

+ ex0 grades released, ex3 released today

= Regrade requests: open 24 hr after, close 72 hr after release

+» We recommend doing the extra exercises
= Also, can Google for “C pointer exercises”

" You MUST master pointers quickly, or you’ll have trouble with the
rest of the course (including hw1)

< hwO due tonight before 11:59 pm (and 0 seconds)
" Git: add/commit/push, then tag with hwO-final, then push tag

- Then clone your repo somewhere totally different and do git
checkout hwO-final and verify that all is well

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Yet More Administrivia (sorry)

+ Exercise grading — Gradescope abuse
= Grading score is an overall evaluation: 3/2/1/0

® Then additional 0 rubric items as needed

- These are a quick way of communicating “why” — reasons for
deductions or comments about your solution

« Allows us to be more consistent in feedback

- The -0 “score” is just because that’s how we have to use Gradescope
to handle feedback notes — it does not contribute to “the points”

w UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Administrivia

%+ hw1l due Thursday, 7/09 11:59 pm
" You may not modify interfaces (. h files)
= But do read the interfaces while you’re implementing them(!)

= New this quarter: short answer questions in README.md

® Suggestions:

- Make sure you understand the diagrams in the specification and draw
box and arrow diagrams!

- If you are stuck, take a break. When you come back, scrutinize your
code.

- Have more fun, less anxiety: pace yourself and make steady progress;
don’t leave it until the last minute!

+ Look at example program {11]|ht}.c fortypical usage of lists
and hash tables

w UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Administrivia

+ @Gitlab repo usage
= Commit things regularly
- Newly completed units of work / milestones / project parts

- End-of-day when wrapping up on one computer so you can later pull
changes to a different machine

- And: for this remote quarter, before “visiting” office hours to make it
easier for you and TA to browse code
- etc.
= Provides backup: protection against lost files and ability to go back in
time to retrieve old versions before they got messed up ©

" There shouldn’t be one massive commit the day hw is due
= But: use it properly
- Don’t push .0 and executable files or other build products
— Clutter, makes it harder to do clean rebuilds, not portable, etc.

- Don’t use git as a file transfer program (don’t edit on one machine,
commit/push/pull to another, compile, and repeat every few minutes)

w UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Discussion Board Tips

+ When you post a new message or question, try to drop it
into the correct category and use a descriptive title

" Help others discover or find previous posts related to their
guestions!

» Consider whether your question/post really should be
private.

= |f others students can benefit from it, you may want to make the
post public (but can still be anonymous)

= |ogistical problems specific to you are probably better for private
posts.

YA UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Lecture Outline

+» Heap-allocated Memory

" malloc () and free ()

" Memory leaks

+ structsand typedef

CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Allocation So Far

+ So far, we have seen two kinds of memory allocation:

CSE333, Summer 2020

(int foo(int a) |{ b
int x = a + 1; // local var
— \ return x;
int counter = 0; // global var }
int main(int argc, char** argv) int main (int argc, char** argv) {
counter++; int y = foo(10); // local var
printf ("count = %d\n",counter); printf ("y = %d\n",vy);
return 0O; return 0;
} }
\ g J

" counter is statically-allocated
- Allocated when program is loaded

- Deallocated when program exits

" a, x,y are automatically-
allocated

« Allocated when function is called

« Deallocated when function returns

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Dynamic Allocation

+» What we want is dynamically-allocated memory
" Your program explicitly requests a new block of memory
- The language allocates it at runtime, perhaps with help from OS
= Dynamically-allocated memory persists until either:

-« Your code explicitly deallocated it (manual memory management)

- A garbage collector collects it (gutomatic memory management)

+ Crequires you to manually manage memory

= Gives you more control, but causes headaches

10

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Why Dynamic Allocation?

« Situations where static and automatic allocation aren’t
sufficient:

" We need memory that persists across multiple function calls but
not for the whole lifetime of the program

"= We need more memory than can fit on the stack

"= We need memory whose size is not known in advance

(// this is pseudo-C code

char* ReadFile (char* filename) ({
int size = GetFileSize (filename);
char* buffer = AllocateMem(size);

ReadFileIntoBuffer (filename, buffer):;
return buffer;

}

\. J

11

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Aside: NULL

+» NULL is a memory location that is guaranteed to be
invalid

" |In Con Linux, NULL is 0x0 and an attempt to dereference NULL
causes a segmentation fault

+ Useful as an indicator of an uninitialized (or currently
unused) pointer or allocation error

" |t's better to cause a segfault than to allow the corruption of
memory!

[int main (int argc, char** argv) {

int* p = NULL;

*op = 1; // causes a segmentation fault
return EXIT SUCCESS;

segfault.c

|}

12

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

[
STY.LE
malloc () T;.I./‘:
+ General usage: [Var = (type*) malloc (size in bytes)]

+» malloc allocates a block of memory of the requested
Size
= Returns a pointer to the first byte of that memory
- And returns NULL if the memory allocation failed! // Check this!
" You should assume that the memory initially contains garbage

= You’'ll typically use sizeof to calculate the size you need

[// allocate a 10-float array
float* arr = (float*) malloc(l10*sizeof (float));
1f (arr == NULL) {
return errcode;

}

// do stuff with arr

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

calloc ()

+» General usage:

[var = (type*) calloc (num, bytes per element)]

+ Likemalloc, but also zeros out the block of memory

= Helpful when zero-initialization wanted (but don’t use it to mask
bugs — fix those)

= Slightly slower; but useful for non-performance-critical code or if
you really are planning to zero out the new block of memory

" mallocandcalloc arefoundin stdlib.h

(// allocate a 10-double array
double* arr = (double*) calloc (10, sizeof (double)):;
1f (arr == NULL) {

return errcode;

}

// do stuff with arr

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

free() Tl

& Usage;[free (polinter) ;]

+ Deallocates the memory pointed-to by the pointer

= Pointer must point to the first byte of heap-allocated memory (i.e.
something previously returned by malloc or calloc)

" Freed memory becomes eligible for future allocation

- [free (NULL) ;] does nothing.
" The bits in the pointer are not changed by calling free

- Defensive programming: can set pointer to NULL after freeing it

N\

rfloat* arr = (float*) malloc(10*sizeof (float));
1f (arr == NULL)
return errcode;
... // do stuff with arr
free(arr);
arr = NULL; // OPTIONAL
\ / 15

YW UNIVERSITY of WASHINGTON LO4: The Heap, Structs

The Heap

+» The Heap is a large pool of

available memory used to hold
dynamically-allocated data

" malloc allocates chunks of data in

the Heap, £ree deallocates those
chunks

" malloc maintains bookkeeping data
in the Heap to track allocated blocks
- Lab 5 from 351!

0x00...00

CSE333, Summer 2020

Stack

Shared Libraries

1

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

16

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Heap and Stack Example

arraycopy.c

}

q

\J

int* copy(int all,

/;include <stdlib.h>

int i, *a2;

a?2 = malloc(size*sizeof (int)) ;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

int main(int argc, char**

int nums[4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;

return 0;

int size) {

1 < size; 1i++)

argv)
4};

array

{

~

CSE333, Summer 2020

Note: Arrow points
to next instruction.

Stack

nums

main

ncopy

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

17

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Heap and Stack Example

arraycopy.c

}

q

\J

int* copy(int all,

/;include <stdlib.h>

int i, *a2;

a?2 = malloc(size*sizeof (int)) ;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

int main(int argc, char**

int nums[4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;

return 0;

int size) {

1 < size; 1i++)

argv)
4};

array

{

~

CSE333, Summer 2020

Note: Arrow points
to next instruction.

Stack

nums|{ 1| 2 | 3

main

ncopy

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

18

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Heap and Stack Example

arraycopy.c

q

}

\J

int* copy(int all,

/;include <stdlib.h>

int i, *a2;

a?2 = malloc(size*sizeof (int)) ;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

int main(int argc, char**

int nums[4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;

return 0;

int size) {

1 < size; 1i++)

argv)
4};

array

{

~

CSE333, Summer 2020

Note: Arrow points
to next instruction.

Stack

main - =
(ncopy

numsJ 1 (2] 3

copy

N

—
a Qb size
i a2

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

19

YA UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

#

}

\J

/;dﬂclude <stdlib.h> ‘\

int* copy(int al[], int size) {

int main(int argc, char** argv) {

int i, *az2;

a2 = malloc(size*sizeof (int));
1f (a2 == NULL)
return NULL;

for (i = 0; 1 < size; i++)
a2l[i] = al[i]l;

return a2;

int nums[4] = {1, 2, 3, 4};
int* ncopy = copy (nums, 4);
// .. do stuff with the array
free (ncopy) ;

return 0O;

LO4: The Heap, Structs

CSE333, Summer 2020

Note: Arrow points
to next instruction.

20

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Heap and Stack Example

arraycopy.c

}

\J

int* copy(int all,

/;include <stdlib.h>

int 1, *a2;

a?2 = malloc(size*sizeof (int)) ;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

int main(int argc, char**

int nums[4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;

return 0;

int size) {

1 < size; 1i++)

argv)
4};

array

{

~

CSE333, Summer 2020

Note: Arrow point
to next instruction

Stack

S

main =
(ncopy

numsJ 1 (2] 3] 4

copy

——
\¥_~_

a ﬂb size| 4

i az %J
/,

1

N

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

21

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Heap and Stack Example

arraycopy.c

}

\J

int* copy(int all,

/;include <stdlib.h>

int 1, *a2;

a?2 = malloc(size*sizeof (int)) ;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

int main(int argc, char**

int nums[4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;

return 0;

int size) {

1 < size; 1i++)

argv)
4};

array

{

~

CSE333, Summer 2020

Note: Arrow points
to next instruction.

Stack

numsJ 112 3| 4
main =
(ncopy
a ﬂb size| 4
(6{0)
Py i]10 az %J
/,
—

1

N

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

22

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Heap and Stack Example

arraycopy.c

}

\J

int* copy(int all,

/;include <stdlib.h>

int 1, *a2;

a?2 = malloc(size*sizeof (int)) ;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

int main(int argc, char**

int nums[4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;

return 0;

int size) {

1 < size; 1i++)

argv)
4};

array

{

~

CSE333, Summer 2020

Note: Arrow point
to next instruction

Stack

S

numsJ 1 (2] 3] 4

main =
(ncopy
a ﬂb size| 4
co
T4 a2 Q)J
/,

1

Q§3 112|134

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

23

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Heap and Stack Example

arraycopy.c

}

q

\J

int* copy(int all,

/;include <stdlib.h>

int i, *a2;

a?2 = malloc(size*sizeof (int)) ;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

int main(int argc, char**

int nums[4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;

return 0;

int size) {

1 < size; 1i++)

argv)
4};

array

{

~

CSE333, Summer 2020

Note: Arrow points
to next instruction.

nums | 1 | 2 | 3

main

ncopy ﬂJ
]

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

24

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Heap and Stack Example

arraycopy.c

}

\J

int* copy(int all,

/;include <stdlib.h>

int i, *a2;

a?2 = malloc(size*sizeof (int)) ;

1f (a2 == NULL)
return NULL;

for (1 = 0;
az2[i] = al[il;

return a2;

int main(int argc, char**

int nums[4] = {1, 2, 3,
int* ncopy = copy (nums,
// .. do stuff with the
free (ncopy) ;

return 0;

int size) {

1 < size; 1i++)

argv)
4};

array

{

~

CSE333, Summer 2020

Note: Arrow points
to next instruction.

main

nums | 1 | 2 | 3

ncopy ﬂJ
]

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

(main, copy)

25

YA UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Heap and Stack Example

arraycopy.c

/;dﬂclude <stdlib.h> ‘\

int* copy(int al[], int size) {
int i, *az2;

a2 = malloc(size*sizeof (int));
1f (a2 == NULL)
return NULL;

for (i = 0; 1 < size; i++)
a2l[i] = al[i]l;

return a2;

}

int main(int argc, char** argv) {
int nums(4] = {1, 2, 3, 4};
int* ncopy = copy (nums, 4);
// .. do stuff with the array

=) free (ncopy);

return 0;

U J

CSE333, Summer 2020

Note: Arrow points
to next instruction.

26

YW UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Heap and Stack Example

arraycopy.c

/;include <stdlib.h> i\
int* copy(int a[], int size) {

int i, *a2;

a?2 = malloc(size*sizeof (int)) ;
1f (a2 == NULL)
return NULL;

for (1 = 0; 1 < size; 1i++)
a2[i] = al[i];
return a2;

}

int main (int argc, char** argv) {

int nums[4] = {1, 2, 3, 4};
int* ncopy = copy (nums, 4);
// .. do stuff with the array

free (ncopy) ;

return 0;
t} J

CSE333, Summer 2020

Note: Arrow points
to next instruction.

Stack

nums | 1 | 2 | 3

main

ncopy ﬂJ
]

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

27

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

o Poll Eve ryWhere pollev.com/cse33320su

+» Which line below is first guaranteed to cause an error?

(#include <stdio.h>)
#include <stdlib.h>

Line 4 int main (int argc, char** argv) {
. int al[2];
. Line 6 int* b = malloc (2*sizeof (int));

) int* c;
Line 7

We’re lost...

moo®p

Joubs WN R
Hh
K
()]
()]
=

28

w UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Memory Corruption

+ There are all sorts of ways to corrupt memory in C

(#include <stdio.h>)
#include <stdlib.h>

int main(int argc, char** argv) {

int af[2]:;

int* b = malloc(2*sizeof (int));

int* c¢;

al[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(al[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

memcorrupt.c \)

29

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Corruption - What Happens?

stack: main

CSE333, Summer 2020

da

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

al[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

J

Note: Arrow points
to next instruction.

30

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Corruption - What Happens?

stack: main

CSE333, Summer 2020

da

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

al[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

J

Note: Arrow points
to next instruction.

31

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Corruption - What Happens?

stack: main

CSE333, Summer 2020

da

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

al[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

J

Note: Arrow points
to next instruction.

32

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Corruption - What Happens?

stack: main

CSE333, Summer 2020

da

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

al[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

J

Note: Arrow points
to next instruction.

33

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Corruption - What Happens?

stack: main

CSE333, Summer 2020

da

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

al[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

J

— 77?7

Note: Arrow points
to next instruction.

34

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Corruption - What Happens?

stack: main

da

Crash!

- ==

heap:

memcorrupt.c

— 77?7

CSE333, Summer 2020

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

al[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

J

Note: Arrow points
to next instruction.

35

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Corruption - What Happens?

stack: main

CSE333, Summer 2020

da

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

al[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

J

— 77?7

Note: Arrow points
to next instruction.

36

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Corruption - What Happens?

stack: main

CSE333, Summer 2020

da

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

al[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

J

— 77?7

Note: Arrow points
to next instruction.

37

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Memory Corruption - What Happens?

stack: main

CSE333, Summer 2020

da

heap:

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

int* b = malloc(2*sizeof (int));

int* c;

al[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(af[0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

// any many more!
return O;

J

— 77?7

Note: Arrow points
to next instruction.

38

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

CSE333, Summer 2020

Memory Leak

+ A memory leak occurs when code fails to deallocate
dynamically-allocated memory that is no longer used

= e.g. forget to £ree malloc-ed block, lose/change pointer to
malloc-ed block

+» What happens: program’s VM footprint will keep growing

This might be OK for short-lived program, since all memory is
deallocated when program ends

Usually has bad repercussions for long-lived programs

- Might slow down over time (e.g. lead to VM thrashing)

- Might exhaust all available memory and crash

- Other programs might get starved of memory

39

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Lecture Outline

+» Heap-allocated Memory

" malloc () and free ()

" Memory leaks

+» structs and typedef

CSE333, Summer 2020

40

.0

YW UNIVERSITY of WASHINGTON

Structured Data

LO4: The Heap, Structs

+ A struct isa Cdatatype that contains a set of fields

= Similar to a Java class, but with no methods or constructors

= Useful for defining new structured types of data

= Act similarly to primitive variables

= A struct tagname is a tag; not a full first-class type name

Generic declaration:

typel namel;

typeN nameN;
by

_

(struct tagname {

\

(// the following defines a new

// structured datatype called
// a "struct Point"
struct Point {

float x, y;

b g

// declare and initialize a
// struct Point variable

\struct Point origin = {0.0,0.0};)

CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Using structs

« Use “.” torefer to afield in a struct

+» Use “—=>" to refer to a field from a struct pointer

= Dereferences pointer first, then accesses field

CSE333, Summer 2020

(struct Point {
float x, y;

I

int main(int argc, char** argv) {
struct Point* pl ptr = &pl;
pl.x = 1.0;

pl ptr->y
return 0;

|

2.0; // equivalent to (*pl ptr).y = 2.

struct Point pl = {0.0, 0.0}, // pl is stack allocated

0,

simplestruct.c

42

YW UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Copy by Assignment

CSE333, Summer 2020

+ You can assign the value of a struct from a struct of the
same type — this copies the entire contents!

(#include <stdio.h>

struct Point {
float x, y;

¥

int main(int argc,
struct Point pl
struct Point p2
printf ("pl: {%f,
p2 = pl;
printf ("pl:
return 0O;

{51,

\J

char** argv) {
= {0.0, 2.0};
= {4.0, 6.0},
st}

p2: {%f,%f}\n", pl.x,

$f} p2: {%f,%f}\n", pl.x,

pl.y,

pl.y,

p2.x%,

p2.x%,

P2.y);

P2.y);

structassign.c

43

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

typedef

o Geneﬁcfonnat[typedef type name;]

+ Allows you to define new data type names/synonyms
"= Both type and name are usable and refer to the same type

= Be careful with pointers — * before name is part of type!

f// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for '"char*"
typedef char *str;

// make '"Point" a synonym for "struct point st { ... }"
// make "PointPtr'" a synonym for "struct point st*"
typedef struct point st {

superlong Xx;

superlong y;
} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};
\. J a4

YW UNIVERSITY of WASHINGTON LO4: The Heap, Structs

CSE333, Summer 2020

Dynamically-allocated Structs

+ Youcanmalloc and £ree structs, just like other data

type

" sizeof is particularly helpful here

(// a complex number is a + bi
typedef struct complex st ({
double real; // real component
double imag; // 1imaginary component
} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*
ComplexPtr AllocComplex (double real, double imag)

1f (retval != NULL) {
retval->real = real;
retval->imag = imag;
}

return retval;

\J

{

Complex* retval = (Complex*) malloc(sizeof (Complex)):;

complexstruct.c

45

CSE333, Summer 2020

YW UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Structs as Arguments

+ Structs are passed by value, like everything else in C

" Entire struct is copied — where?

" To manipulate a struct argument, pass a pointer instead

(typedef struct poilnt st { h
int x, y;
} Point, *PointPtr;
vold DoubleXBroken (Point p) { p.x *= 2; 1}
vold DoubleXWorks (PointPtr p) { p->x *= 2; }
int main(int argc, char** argv) {
Point a = {1,1};
DoubleXBroken (a) ;
printf (" (%d, %d) \n", a.x, a.y): // prints: (,)
DoubleXWorks (&a) ;
printf (" (%d, %d) \n", a.x, a.y): // prints: (,)
return 0;
] J a6

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Returning Structs

+ Exact method of return depends on calling conventions
= Oftenin $rax and $rdx for small structs

= Often returned in memory for larger structs

(// a complex number is a + bi R
typedef struct complex st ({
double real; // real component
double imag; // 1imaginary component
} Complex, *ComplexPtr;
Complex MultiplyComplex (Complex x, Complex y) {
Complex retval;
retval.real = (x.real * y.real) - (x.imag * y.imag);
retval.imag = (x.imag * y.real) - (x.real * y.imagqg);
return retval; // returns a copy of retval
k} J

complexstruct.c

47

w UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Pass Copy of Struct or Pointer?

+ Value passed: passing a pointer is cheaper and takes less
space unless struct is small

» Field access: indirect accesses through pointers are a bit
more expensive and can be harder for compiler to
optimize

» For small stucts (like struct complex st), passinga
copy of the struct can be faster and often preferred if
function only reads data; for large structs use pointers

48

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Summer 2020

Extra Exercise #1

+ Write a program that defines:
" A new structured type Point
- Represent it with £1oats for the x and y coordinates

= A new structured type Rectangle
- Assume its sides are parallel to the x-axis and y-axis

- Represent it with the bottom-left and top-right Points
= A function that computes and returns the area of a Rectangle

= A function that tests whether a Point is inside of a Rectangle

49

YW UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Extra Exercise #2

Implement AllocSet () and FreeSet ()

= AllocSet() needs to use malloc twice: once to allocate a new
ComplexSet and once to allocate the “points” field inside it

= FreeSet() needs to use free twice

CSE333, Summer 2020

(typedef struct complex st {

double real; // real component
double imag; // imaginary component
} Complex;

typedef struct complex set st {
double num points in_ set;

Complex* points; // an array of Complex
} ComplexSet;

ComplexSet* AllocSet (Complex c _arr[], int size);
voilid FreeSet (ComplexSet* set);

.

