
CSE333, Summer 2020L01: Intro, C

Intro, C refresher
CSE 333 Summer 2020

Instructor: Travis McGaha

Teaching Assistants:

Jeter Arellano Ramya Challa Kyrie Dowling
Ian Hsiao Allen Jung Sylvia Wang

Welcome – please set up
your Zoom session. We’ll
start the actual class meeting
at 10:50 am pdt

CSE333, Summer 2020L01: Intro, C

Lecture Outline

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/20su/syllabus/

▪ Summary here, but you must read the full details online

❖ Course Introduction

❖ C Intro

2

CSE333, Summer 2020L01: Intro, C

But first…

❖ It’s all virtual, all the time this quarter

❖ Core infrastructure is same as usual (Gradescope, Gitlab,
web, discussion board) except that lab machines are
remote login only all quarter

❖ But lectures, sections, office hours – Zoom

❖ Most important: stay healthy, keep your (physical)
distance from others, help others both in and out of class

3

CSE333, Summer 2020L01: Intro, C

Virtual Lectures

❖ Classes are going to be mostly lectures. Will have some
student participation with Poll Everywhere.

❖ Conventions (from page on our web site)

▪ Lecture will be recorded and archived – available to class only

▪ If you have a question, type “hand” or “question” in Zoom chat
window

• If needed, indicate if we should pause recording while you’re talking

▪ Please keep your microphone muted during class unless you’re
using it for a question or during breakout room discussions

▪ Lecture slides will be posted in advance along with “virtual
handouts” for some lectures

4

CSE333, Summer 2020L01: Intro, C

Virtual Sections

❖ Sections: more Zoom

▪ Not normally recorded so we can have open discussions and
group work without people being too self-conscious

▪ We’re going to try to produce videos for things that would
normally be done as demos or presentations in sections; details
tba

• Those will be available online via canvas

▪ Slides and any sample code, worksheets, etc. posted on website

❖ Sections have been split from 2 to 4

5

CSE333, Summer 2020L01: Intro, C

Virtual Everything Else

❖ Office hours: also Zoom; Will make use of a queue system
(more info on website: https://courses.cs.washington.edu/courses/cse333/20su/oh.html)

▪ Not recorded or archived

▪ Once gitlab repos are set up, if your question concerns your code
(exercises, projects), please push latest code to the repo before
meeting with TA to save some time

❖ We are also offering the chance to ask for 1-on-1
meetings with a staff member. This could help alleviate
time zone differences and busy OH’s.

❖ You will be bombarded with email as we add these things
to Canvas/Zoom. Feel free to ignore. ☺

6

https://courses.cs.washington.edu/courses/cse333/20su/oh.html

CSE333, Summer 2020L01: Intro, C

Introductions: Course Staff

❖ Travis McGaha(instructor)

▪ First-time Instructor, given lectures previously and a CSE 333
veteran TA.

❖ TAs:

❖ Get to know us

▪ We are here to help you succeed!

7

CSE333, Summer 2020L01: Intro, C

Introductions: Students

❖ ~75 students this quarter

▪ There are no overload forms or waiting lists for CSE courses

❖ Expected background

▪ Prereq: CSE 351 – C, pointers, memory model, linker, system calls

▪ Indirect Prereq: CSE 143 – Classes, Inheritance, Basic Data
structures, and general good style practices.

▪ CSE 391 or Linux skills needed for CSE 351 assumed

8

CSE333, Summer 2020L01: Intro, C

Assigned Work

❖ Explore the website thoroughly: http://cs.uw.edu/333

❖ Computer setup: CSE remote lab, attu, or CSE Linux VM

❖ Exercise 0 is due 10:30 am Wednesday before class*

▪ Find exercise spec on website, submit via Gradescope

▪ Sample solution will be posted Friday after class

▪ Give it your best shot to get it done more-or-less on time*
*but we’ll figure out how to work around late exercises for this week…

❖ Pre-Quarter survey up on canvas. Due Friday @11:59 pm

▪ Answers are anonymous. Will help us figure out how to make
course as great as possible

9

http://cs.uw.edu/333

CSE333, Summer 2020L01: Intro, C

Communication

❖ Website: http://cs.uw.edu/333
▪ Schedule, policies, materials, assignments, etc.

❖ Discussion: Ed group linked to course home page
▪ Must log in using your @uw.edu Google identity (not cse)
▪ Ask and answer questions – staff will monitor and contribute
▪ Can post private questions, but students can also help. It is probably worthwhile

posting anonymously instead of privately (unless you intend to show your code)

❖ Staff mailing list: cse333-staff@cs for urgent things not appropriate for
discussion group.

❖ Course mailing list: for announcements from staff
▪ Registered students automatically subscribed with your @uw email

❖ Office Hours: spread throughout the week
▪ Schedule & OH queue posted on website. Zoom links are on canvas.
▪ Can also e-mail to staff list to make individual appointments

10

http://cs.uw.edu/333

CSE333, Summer 2020L01: Intro, C

Course Components

❖ Lectures (~26)
▪ Introduce the concepts; take notes!!!

❖ Sections (9)
▪ Applied concepts, important tools and skills for assignments, and

clarification of lectures

❖ Programming Exercises (~20)
▪ Roughly one per lecture, due the morning before the next lecture

▪ Coarse-grained grading (0, 1, 2, or 3)

❖ Programming Projects (0+4)
▪ Warm-up, then 4 “homeworks” that build on each other

❖ Exams: nothing traditional; maybe 1-2 online quizzes

▪ Stay tuned, still working on that

11

CSE333, Summer 2020L01: Intro, C

Grading (tentative)

❖ Exercises: 30% total

▪ Submitted via GradeScope (account info mailed yesterday)

▪ Graded on correctness and style by TAs

❖ Projects: 50% total

▪ Submitted via GitLab; must tag commit that you want graded

▪ Binaries provided if you didn’t get previous part working

❖ Quizzes: ~15%, if we have them

❖ Participation: ~5%

▪ Many ways to earn it, as detailed on syllabus. Will be relatively
lenient on this.

❖ More details on course website

▪ You must read the syllabus there – you are responsible for it
12

CSE333, Summer 2020L01: Intro, C

Deadlines and Student Conduct

❖ Late policies (standard quarters)

▪ Exercises: no late submissions accepted, due 10:30 am

▪ Projects: 4 late days for entire quarter, max 2 per project

▪ Need to get things done on time – difficult to catch up!

❖ Academic Integrity (read the full policy on the web)

▪ I trust you implicitly and will follow up if that trust is violated

▪ In short: don’t attempt to gain credit for something you didn’t do
and don’t help others do so either

▪ This does not mean suffer in silence – learn from the course staff
and peers, talk, share ideas; but don’t share your work or copy
other’s work.

13

CSE333, Summer 2020L01: Intro, C

Deadlines (this quarter)

❖ We’re hoping to stay close to a normal schedule to make
progress, but…

▪ It is an unusual quarter (understatement)

▪ We’ll be quite flexible depending on circumstances

❖ We’re going to start exercises right away

▪ Need to discover how to get compute cycles now; no point in
putting it off

▪ We will be pretty lenient on the exercise grading this quarter.

14

CSE333, Summer 2020L01: Intro, C

Deep Breath….

❖ Any questions, comments, observations, before we go on
to, uh, some technical stuff?

17

CSE333, Summer 2020L01: Intro, C

Lecture Outline

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/20su/syllabus/

❖ Course Introduction

❖ C Intro

18

https://courses.cs.washington.edu/courses/cse333/20su/syllabus/

CSE333, Summer 2020L01: Intro, C

Course Map: 100,000 foot view

19

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Summer 2020L01: Intro, C

What is Systems Programming?

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

▪ Programming: Usually C / C++

▪ Discipline: testing, debugging, following good practices,
and light performance analysis

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent
data management, networks, …

• Most important: a deep(er) understanding of the “layer below”

20

CSE333, Summer 2020L01: Intro, C

Discipline?!?

❖ Cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing

▪ Documentation (code comments, design docs)

▪ Code reviews

❖ Will take you a lifetime to learn

▪ But oh-so-important, especially for systems code

• Avoid write-once, read-never code

21

CSE333, Summer 2020L01: Intro, C

Lecture Outline

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/20su/syllabus/

❖ Course Introduction

❖ C Intro

▪ Workflow, Variables, Functions

22

CSE333, Summer 2020L01: Intro, C

C

❖ Created in 1972 by Dennis Ritchie

▪ Designed for creating system software

▪ Portable across machine architectures

▪ Most recent notable updates in 1999 (C99) and 2011 (C11)

❖ Characteristics

▪ “Low-level” language that allows us to exploit underlying features
of the architecture – but easy to fail spectacularly (!)

▪ Procedural (not object-oriented)

▪ Typed but unsafe (possible to bypass the type system)

▪ Small, basic library compared to Java, C++, most others….

23

CSE333, Summer 2020L01: Intro, C

Generic C Program Layout

24

#include <system_files>

#include "local_files"

#define macro_name macro_expr

/* declare functions */

/* declare external variables & structs */

int main(int argc, char* argv[]) {

/* the innards */

}

/* define other functions */

STYLE
TIP

CSE333, Summer 2020L01: Intro, C

C Syntax: main

❖ To get command-line arguments in main, use:

▪ int main(int argc, char* argv[])

❖ What does this mean?

▪ argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument).

▪ argv is an array containing pointers to the arguments as strings

(more on pointers later)

❖ Example: $ foo hello 87

▪ argc = 3

▪ argv[0]="foo", argv[1]="hello", argv[2]="87"

25

int main(int argc, char* argv[])

CSE333, Summer 2020L01: Intro, C

C Workflow

Editor (emacs, vi) or IDE (eclipse)

26

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries

LINK

CSE333, Summer 2020L01: Intro, C

C to Machine Code

27

C source file
(sumstore.c)

Assembly file
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,

int* dest) {

*dest = x + y;

}

sumstore:

addl %edi, %esi

movl %esi, (%rdx)

ret

Machine code
(sumstore.o)

400575: 01 fe

89 32

c3

C compiler
(gcc –c)

CSE333, Summer 2020L01: Intro, C

When Things Go South…

❖ Errors and Exceptions
▪ C does not have exception handling (no try/catch)

▪ Errors are returned as integer error codes from functions

• Standard codes found in stdlib.h:
EXIT_SUCCESS (usually 0) and EXIT_FAILURE (non-zero)

• Return value from main is a status code

▪ Because of this, error handling is ugly and inelegant

❖ Crashes

▪ If you do something bad, you hope to get a “segmentation fault”
(believe it or not, this is the “good” option)

28

STYLE
TIP

CSE333, Summer 2020L01: Intro, C

Java vs. C (351 refresher)

❖ Are Java and C mostly similar (S) or significantly different
(D) in the following categories?

▪ List any differences you can recall (even if you put ‘S’)

30

Language Feature S/D Differences in C

Control structures

Primitive datatypes

Operators

Casting

Arrays

Memory management

Similar but sizes can differ (char, esp.), unsigned,
no boolean, uninitialized data, …

Java has >>>, C has ->

Java enforces type safety, C does not

Not objects, don’t know their own length, no
bounds checking

Manual (malloc/free), no garbage collection

C has goto (which we will not use)S

S/D

S

D

D

D

CSE333, Summer 2020L01: Intro, C

Primitive Types in C

❖ Integer types
▪ char, int

❖ Floating point
▪ float, double

❖ Modifiers
▪ short [int]

▪ long [int, double]

▪ signed [char, int]

▪ unsigned [char, int]

31

C Data Type 32-bit 64-bit printf

char 1 1 %c

short int 2 2 %hd

unsigned short int 2 2 %hu

int 4 4 %d / %i

unsigned int 4 4 %u

long int 4 8 %ld

long long int 8 8 %lld

float 4 4 %f

double 8 8 %lf

long double 12 16 %Lf

pointer 4 8 %p

Typical sizes – see sizeofs.c

CSE333, Summer 2020L01: Intro, C

C99 Extended Integer Types

❖ Solves the conundrum of “how big is an long int?”

32

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {

int8_t a; // exactly 8 bits, signed

int16_t b; // exactly 16 bits, signed

int32_t c; // exactly 32 bits, signed

int64_t d; // exactly 64 bits, signed

uint8_t w; // exactly 8 bits, unsigned

...

} When byte size matters, use
extended integer types.

CSE333, Summer 2020L01: Intro, C

Basic Data Structures

❖ C does not support objects!!!

❖ Arrays are contiguous chunks of memory
▪ Arrays have no methods and do not know their own length

▪ Can easily run off ends of arrays in C – security bugs!!!

❖ Strings are null-terminated char arrays
▪ Strings have no methods, but string.h has helpful utilities

❖ Structs are the most object-like feature, but are just collections
of fields – no “methods” or functions

33

x h e l l o \n \0char* x = "hello\n";

CSE333, Summer 2020L01: Intro, C

Function Definitions

❖ Generic format:

34

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

returnType fname(type param1, …, type paramN) {

// statements

}

CSE333, Summer 2020L01: Intro, C

Function Ordering

❖ You shouldn’t call a function that hasn’t been declared yet

35

#include <stdio.h>

int main(int argc, char** argv) {

printf("sumTo(5) is: %d\n", sumTo(5));

return 0;

}

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

sum_badorder.c

CSE333, Summer 2020L01: Intro, C

Solution 1: Reverse Ordering

❖ Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

36

#include <stdio.h>

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

int main(int argc, char** argv) {

printf("sumTo(5) is: %d\n", sumTo(5));

return 0;

}

sum_betterorder.c

CSE333, Summer 2020L01: Intro, C

Solution 2: Function Declaration

❖ Teaches the compiler arguments and return types;
function definitions can then be in a logical order

37

sum_declared.c #include <stdio.h>

int sumTo(int); // func prototype

int main(int argc, char** argv) {

printf("sumTo(5) is: %d\n", sumTo(5));

return 0;

}

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

Hint: code examples
from slides are on the
course web for you to
experiment with

CSE333, Summer 2020L01: Intro, C

Function Declaration vs. Definition

❖ C/C++ make a careful distinction between these two

❖ Definition: the thing itself

▪ e.g. code for the function, variable definition that creates storage

▪ Must be exactly one definition of each thing (no duplicates)

❖ Declaration: description of a thing

▪ e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include

• Should also #include declaration in the file with the actual
definition to check for consistency

▪ Needs to appear in all files that use that thing

• Should appear before first use
38

CSE333, Summer 2020L01: Intro, C

Multi-file C Programs

39

void sumstore(int x, int y, int* dest) {

*dest = x + y;

}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {

int z, x = 351, y = 333;

sumstore(x,y,&z);

printf("%d + %d = %d\n",x,y,z);

return 0;

}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:
$ gcc -o sumnum sumnum.c sumstore.c

definition

declaration

Note that some
of the lecture
code has bad
style to demo
things. This code
uses bad style.

CSE333, Summer 2020L01: Intro, C

Compiling Multi-file Programs

❖ The linker combines multiple object files plus statically-
linked libraries to produce an executable
▪ Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

40

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or
gcc

CSE333, Summer 2020L01: Intro, C

Peer Instruction Question

❖ Which of the following statements is FALSE?

▪ Vote at http://PollEv.com/cse33320su

A. With the standard main() syntax, It is always safe
to use argv[0].

B. We can’t use uint64_t on a 32-bit machine
because there isn’t a C integer primitive of that
length.

C. Using function declarations is beneficial to both
single- and multi-file C programs.

D. When compiling multi-file programs, not all linking is
done by the Linker.

E. We’re lost…
41

http://pollev.com/justinh

CSE333, Summer 2020L01: Intro, C

To-do List

❖ Explore the website thoroughly: http://cs.uw.edu/333

❖ Computer setup: CSE remote lab, attu, or CSE Linux VM

❖ Exercise 0 is due 10:30 am Wednesday before class*
▪ Find exercise spec on website, submit via Gradescope
▪ Sample solution will be posted Friday after class
▪ Give it your best shot to get it done more-or-less on time*

*but we’ll figure out how to work around late exercises for this week…

❖ Pre-Quarter survey up on canvas. Due Friday @11:59 pm
▪ Answers are anonymous. Will help us figure out how to make course as

great as possible

❖ Gradescope accounts created just before class
▪ Userid is your uw.edu email address
▪ Exercise submission: find CSE 333 20su, click on the exercise, drag-n-drop

file(s)! That’s it!! Ignore any messages about autograding not using this
quarter

42

http://cs.uw.edu/333

