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Administrivia

v hw4 due Thur. night
§ (Plus late days – max 2 – if you have them)

v Please nominate great TAs for the Bandes award
v Please fill out course evals while they are available

§ Try to get to the extra questions at the end about this unusual 
online quarter – thanks

v Wrapup class on Friday.  What about Wednesday?

v Current situation: how to we react?

2



CSE333, Spring 2020L27:  Concurrency and Processes

Outline

v searchserver
§ Sequential
§ Concurrent via forking threads – pthread_create()
§ Concurrent via forking processes – fork()
§

•

v Reference:  Computer Systems: A Programmer’s 
Perspective, Chapter 12 (CSE 351 book)
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Creating New Processes

v

§ Creates a new process (the “child”) that is an exact clone* of the 
current process (the “parent”)
• *Everything is cloned except threads:  variables, file descriptors, open 

sockets, the virtual address space (code, globals, heap, stack), etc.

§ Primarily used in two patterns:
• Servers:  fork a child to handle a connection
• Shells:  fork a child that then exec’s a new program
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pid_t fork(void);
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fork() and Address Spaces

v A process executes within an 
address space
§ Includes segments for different parts 

of memory
§ Process tracks its current state using 

the stack pointer (SP) and program 
counter (PC)
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fork() and Address Spaces

v Fork cause the OS to 
clone the 
address space
§ The copies of the 

memory segments are 
(nearly) identical

§ The new process has 
copies of the parent’s 
data, stack-allocated 
variables, open file 
descriptors, etc.
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fork()

v fork() has peculiar semantics
§ The parent invokes fork()
§ The OS clones the parent
§ Both the parent and the child return 

from fork
• Parent receives child’s pid
• Child receives a 0
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fork()

v fork() has peculiar semantics
§ The parent invokes fork()
§ The OS clones the parent
§ Both the parent and the child return 

from fork
• Parent receives child’s pid
• Child receives a 0
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fork()

v fork() has peculiar semantics
§ The parent invokes fork()
§ The OS clones the parent
§ Both the parent and the child return 

from fork
• Parent receives child’s pid
• Child receives a 0

v See fork_example.cc
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Concurrent Server with Processes

v The parent process blocks on accept(), waiting for a 
new client to connect
§ When a new connection arrives, the parent calls fork() to 

create a child process
§ The child process handles that new connection and exit()’s 

when the connection terminates

v Remember that children become “zombies” after death
§ Option A:  Parent calls wait() to “reap” children
§ Option B:  Use a double-fork trick
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Double-fork Trick
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Double-fork Trick
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Double-fork Trick
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Double-fork Trick
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Double-fork Trick
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Double-fork Trick
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Double-fork Trick
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Double-fork Trick
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Double-fork Trick
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Double-fork Trick

20

client server

client server

client server

client server

client server

client server
client server

client server

client server

server



CSE333, Spring 2020L27:  Concurrency and Processes

Concurrent with Processes

v See searchserver_processes/
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Whither Concurrent Processes?

v Advantages:
§ Almost as simple to code as sequential

• In fact, most of the code is identical!

§ Concurrent execution leads to better CPU, network utilization

v Disadvantages:
§ Processes are heavyweight

• Relatively slow to fork
• Context switching latency is high

§ Communication between processes is complicated
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How Fast is fork()?

v See forklatency.cc

v ~ 0.25 ms per fork*
§ ∴ maximum of (1000/0.25) = 4,000 connections/sec/core
§ ~350 million connections/day/core

• This is fine for most servers
• Too slow for super-high-traffic front-line web services

– Facebook served ~ 750 billion page views per day in 2013!
Would need 3-6k cores just to handle fork(), i.e. without doing any work 
for each connection 

v *Past measurements are not indicative of future performance – depends on hardware, OS, 
software versions, …
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How Fast is pthread_create()?

v See threadlatency.cc

v ~0.036 ms per thread creation*
§ ~10x faster than fork()
§ ∴ maximum of (1000/0.036) = 28,000 connections/sec
§ ~2.4 billion connections/day/core

v Mush faster, but writing safe multithreaded code can be 
serious voodoo

v *Past measurements are not indicative of future performance – depends on hardware, OS, 
software versions, …, but will typically be an order of magnitude faster than fork()
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Aside: Thread Pools

v In real servers, we’d like to avoid overhead needed to 
create a new thread or process for every request

v Idea: Thread Pools:
§ Create a fixed set of worker threads or processes on server 

startup and put them in a queue
§ When a request arrives, remove the first worker thread from the 

queue and assign it to handle the request
§ When a worker is done, it places itself back on the queue and 

then sleeps until dequeued and handed a new request
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