
CSE333, Spring 2020L27: Concurrency and Processes

Concurrency: Processes
CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:
Ramya Challa Mengqi Chen John Depaszthory
Greg Guo Zachary Keyes CJ Lin
Travis McGaha Arjun Singh Guramrit Singh
Cosmo Wang Yifan Xu Robin Yang
Haoran Yu Velocity Yu

CSE333, Spring 2020L27: Concurrency and Processes

Administrivia

v hw4 due Thur. night
§ (Plus late days – max 2 – if you have them)

v Please nominate great TAs for the Bandes award
v Please fill out course evals while they are available

§ Try to get to the extra questions at the end about this unusual
online quarter – thanks

v Wrapup class on Friday. What about Wednesday?

v Current situation: how to we react?

2

CSE333, Spring 2020L27: Concurrency and Processes

Outline

v searchserver
§ Sequential
§ Concurrent via forking threads – pthread_create()
§ Concurrent via forking processes – fork()
§

•

v Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

3

CSE333, Spring 2020L27: Concurrency and Processes

Creating New Processes

v

§ Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)
• *Everything is cloned except threads: variables, file descriptors, open

sockets, the virtual address space (code, globals, heap, stack), etc.

§ Primarily used in two patterns:
• Servers: fork a child to handle a connection
• Shells: fork a child that then exec’s a new program

4

pid_t fork(void);

CSE333, Spring 2020L27: Concurrency and Processes

fork() and Address Spaces

v A process executes within an
address space
§ Includes segments for different parts

of memory
§ Process tracks its current state using

the stack pointer (SP) and program
counter (PC)

5

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

CSE333, Spring 2020L27: Concurrency and Processes

fork() and Address Spaces

v Fork cause the OS to
clone the
address space
§ The copies of the

memory segments are
(nearly) identical

§ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

6

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

CSE333, Spring 2020L27: Concurrency and Processes

fork()

v fork() has peculiar semantics
§ The parent invokes fork()
§ The OS clones the parent
§ Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

7

parent

OS

fork()

CSE333, Spring 2020L27: Concurrency and Processes

fork()

v fork() has peculiar semantics
§ The parent invokes fork()
§ The OS clones the parent
§ Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

8

parent child

OS

clone

CSE333, Spring 2020L27: Concurrency and Processes

fork()

v fork() has peculiar semantics
§ The parent invokes fork()
§ The OS clones the parent
§ Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

v See fork_example.cc

9

parent child

OS

child pid 0

CSE333, Spring 2020L27: Concurrency and Processes

Concurrent Server with Processes

v The parent process blocks on accept(), waiting for a
new client to connect
§ When a new connection arrives, the parent calls fork() to

create a child process
§ The child process handles that new connection and exit()’s

when the connection terminates

v Remember that children become “zombies” after death
§ Option A: Parent calls wait() to “reap” children
§ Option B: Use a double-fork trick

10

CSE333, Spring 2020L27: Concurrency and Processes

Double-fork Trick

11

server

CSE333, Spring 2020L27: Concurrency and Processes

Double-fork Trick

12

client

server

connect

accept()

CSE333, Spring 2020L27: Concurrency and Processes

Double-fork Trick

13

client

server

server
fork() child

CSE333, Spring 2020L27: Concurrency and Processes

Double-fork Trick

14

client server

server

server
fork() grandchild

CSE333, Spring 2020L27: Concurrency and Processes

Double-fork Trick

15

client server

server

child exit()’s / parent wait()’s

CSE333, Spring 2020L27: Concurrency and Processes

Double-fork Trick

16

client server

server parent closes its
client connection

CSE333, Spring 2020L27: Concurrency and Processes

Double-fork Trick

17

client server

server

CSE333, Spring 2020L27: Concurrency and Processes

Double-fork Trick

18

client server

server

server

server

client

fork() grandchild
exit()

fork() child

CSE333, Spring 2020L27: Concurrency and Processes

Double-fork Trick

19

client server

client server

server

CSE333, Spring 2020L27: Concurrency and Processes

Double-fork Trick

20

client server

client server

client server

client server

client server

client server
client server

client server

client server

server

CSE333, Spring 2020L27: Concurrency and Processes

Concurrent with Processes

v See searchserver_processes/

22

CSE333, Spring 2020L27: Concurrency and Processes

Whither Concurrent Processes?

v Advantages:
§ Almost as simple to code as sequential

• In fact, most of the code is identical!

§ Concurrent execution leads to better CPU, network utilization

v Disadvantages:
§ Processes are heavyweight

• Relatively slow to fork
• Context switching latency is high

§ Communication between processes is complicated

23

CSE333, Spring 2020L27: Concurrency and Processes

How Fast is fork()?

v See forklatency.cc

v ~ 0.25 ms per fork*
§ ∴ maximum of (1000/0.25) = 4,000 connections/sec/core
§ ~350 million connections/day/core

• This is fine for most servers
• Too slow for super-high-traffic front-line web services

– Facebook served ~ 750 billion page views per day in 2013!
Would need 3-6k cores just to handle fork(), i.e. without doing any work
for each connection

v *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …

24

CSE333, Spring 2020L27: Concurrency and Processes

How Fast is pthread_create()?

v See threadlatency.cc

v ~0.036 ms per thread creation*
§ ~10x faster than fork()
§ ∴ maximum of (1000/0.036) = 28,000 connections/sec
§ ~2.4 billion connections/day/core

v Mush faster, but writing safe multithreaded code can be
serious voodoo

v *Past measurements are not indicative of future performance – depends on hardware, OS,
software versions, …, but will typically be an order of magnitude faster than fork()

25

CSE333, Spring 2020L27: Concurrency and Processes

Aside: Thread Pools

v In real servers, we’d like to avoid overhead needed to
create a new thread or process for every request

v Idea: Thread Pools:
§ Create a fixed set of worker threads or processes on server

startup and put them in a queue
§ When a request arrives, remove the first worker thread from the

queue and assign it to handle the request
§ When a worker is done, it places itself back on the queue and

then sleeps until dequeued and handed a new request

26

