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Administrivia

❖ Sections tomorrow: pthread tutorial/demo

▪ pthread exercise posted after sections, due Monday morning

▪ Much more about concurrency in this and next several lectures

• But will not repeat section material
(This means you should show up if you can)

❖ hw4 due next Thursday night
▪ Yes, can still use up to 2 late days on hw4 (if you haven’t used 

them up already – check!)

❖ Please update your Zoom client app if the one you’re 
using is older than version 5.0
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Outline

❖ Understanding Concurrency

▪ Why is it useful

▪ Why is it hard

❖ Concurrent Programming Styles

▪ Threads vs. processes

▪ Asynchronous or non-blocking I/O

• “Event-driven programming”
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Building a Web Search Engine

❖ We need:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set
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Simplified Search Engine Architecture
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Search Engine (Pseudocode) Sequential
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doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

return doclist;

}

main() {

SetupServerToReceiveConnections();

while (1) {

string query_words[] = GetNextQuery();

results = Lookup(query_words[0]);

foreach word in query[1..n] {

results = results.intersect(Lookup(word));

}

Display(results);

}

}
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Execution Timeline: a Multi-Word Query
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What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

8



CSE333, Spring 2020L25:  Concurrency Intro

Execution Timeline: To Scale
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Sequential Queries – Simplified
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Sequential Queries: To Scale
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Web Search Architecture
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Multiple Clients – Simplified
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Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

❖ The CPU is idle most of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.
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Concurrency

❖ A version of the program that executes multiple tasks 

simultaneously

▪ Example: Our web server could execute multiple queries at the 

same time

• While one is waiting for I/O, another can be executing on the CPU

▪ Example: Execute queries one at a time, but issue I/O requests

against different files/disks simultaneously

• Could read from several index files at once, processing the I/O results 

as they arrive

❖ Concurrency != parallelism

▪ Parallelism is executing multiple CPU instructions simultaneously
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A Concurrent Implementation 

❖ Use multiple threads or processes

▪ As a query arrives, fork a new thread (or process) to handle it

• The thread reads the query from the network, issues read requests 

against files, assembles results and writes back over the network

▪ The OS context switches between threads/processes

• While one is blocked on I/O, another can use the CPU

• Multiple threads’ I/O requests can be issued at once
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Introducing Threads

❖ Separate the concept of a process from an individual 

“thread of control” 

▪ Usually called a thread (or a lightweight process), this is a 

sequential execution stream within a process

❖ In most modern OS’s:

▪ Process:  address space, OS resources/process attributes

▪ Thread:  stack, stack pointer, program counter, registers

▪ Threads are the unit of scheduling and processes are their 

containers; every process has at least one thread running in it
17
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Multi-threaded Search Engine (Pseudocode)
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doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist

doclist.append(file.read(hit));

return doclist;

}

ProcessQuery(string query_words[]) {

results = Lookup(query_words[0]);

foreach word in query[1..n]

results = results.intersect(Lookup(word));

Display(results);

}

main() {

while (1) {

string query_words[] = GetNextQuery();

CreateThread(ProcessQuery(query_words));

}

}
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Multithreaded Queries – Simplified

19

C
P
U
 
1
.
a

I
/
O
 
1
.
b

C
P
U
 
1
.
c

I
/
O
 
1
.
d

C
P
U
 
1
.
e

C
P
U
 
2
.
a

I
/
O
 
2
.
b

C
P
U
 
3
.
a

I
/
O
 
3
.
b

C
P
U
 
3
.
c

I
/
O
 
3
.
d

C
P
U
 
3
.
e

time

query 2

query 3

query 1

C
P
U
 
2
.
c

I
/
O
 
2
.
d

C
P
U
 
2
.
e



CSE333, Spring 2020L25:  Concurrency Intro

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, 

& security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter,

& registers

▪ Threads are the unit of scheduling and processes are their 

containers; every process has at least one thread running in it
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Threads vs. Processes
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Threads vs. Processes
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Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context 

switching

▪ Cannot easily share memory between processes – typically 

communicate through the file system
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Alternate: Asynchronous I/O

❖ Use asynchronous or non-blocking I/O

❖ Your program begins processing a query

▪ When your program needs to read data to make further progress, 

it registers interest in the data with the OS and then switches to a 

different query

▪ The OS handles the details of issuing the read on the disk, or 

waiting for data from the console (or other devices, like the 

network)

▪ When data becomes available, the OS lets your program know

❖ Your program (almost never) blocks on I/O
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Event-Driven Programming

❖ Your program is structured as an event-loop

26

void dispatch(task, event) {

switch (task.state) {

case READING_FROM_CONSOLE:

query_words = event.data;

async_read(index, query_words[0]);

task.state = READING_FROM_INDEX;

return;

case READING_FROM_INDEX:

...

}

}

int main() {

while (1) {

event = OS.GetNextEvent();

task = lookup(event);

dispatch(task, event);

}

}
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Asynchronous, Event-Driven
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Non-blocking vs. Asynchronous

❖ Reading from the network can truly block your program

▪ Remote computer may wait arbitrarily long before sending data

❖ Non-blocking I/O (network, console)

▪ Your program enables non-blocking I/O on its file descriptors

▪ Your program issues read() and write() system calls

• If the read/write would block, the system call returns immediately

▪ Program can ask the OS which file descriptors are 

readable/writeable

• Program can choose to block while no file descriptors are ready
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Non-blocking vs. Asynchronous

❖ Asynchronous I/O (disk)

▪ Program tells the OS to begin reading/writing

• The “begin_read” or “begin_write” returns immediately

• When the I/O completes, OS delivers an event to the program

❖ According to the Linux specification, the disk never blocks 

your program (just delays it)

▪ Asynchronous I/O is primarily used to hide disk latency

▪ Asynchronous I/O system calls are messy and complicated 
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Why Events?

❖ Advantages:

▪ Don’t have to worry about locks and race conditions

▪ For some kinds of programs, especially GUIs, leads to a very 

simple and intuitive program structure

• One event handler for each UI element

❖ Disadvantages:

▪ Can lead to very complex structure for programs that do lots of 

disk and network I/O

• Sequential code gets broken up into a jumble of small event handlers

• You have to package up all task state between handlers
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One Way to Think About It

❖ Threaded code:

▪ Each thread executes its task sequentially, and per-task state is 

naturally stored in the thread’s stack

▪ OS and thread scheduler switch between threads for you

❖ Event-driven code:

▪ *You* are the scheduler

▪ You have to bundle up task state into continuations (data 

structures describing what-to-do-next); tasks do not have their 

own stacks
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