
CSE333, Spring 2020L25: Concurrency Intro

Introduction to Concurrency
CSE 333 Spring 2020

Instructor: Hal Perkins

Guest Lecturer: Travis McGaha

Teaching Assistants:

Ramya Challa Mengqi Chen John Depaszthory

Greg Guo Zachary Keyes CJ Lin

Travis McGaha Arjun Singh Guramrit Singh

Cosmo Wang Yifan Xu Robin Yang

Haoran Yu Velocity Yu

CSE333, Spring 2020L25: Concurrency Intro

Administrivia

❖ Sections tomorrow: pthread tutorial/demo

▪ pthread exercise posted after sections, due Monday morning

▪ Much more about concurrency in this and next several lectures

• But will not repeat section material
(This means you should show up if you can)

❖ hw4 due next Thursday night
▪ Yes, can still use up to 2 late days on hw4 (if you haven’t used

them up already – check!)

❖ Please update your Zoom client app if the one you’re
using is older than version 5.0

2

CSE333, Spring 2020L25: Concurrency Intro

Outline

❖ Understanding Concurrency

▪ Why is it useful

▪ Why is it hard

❖ Concurrent Programming Styles

▪ Threads vs. processes

▪ Asynchronous or non-blocking I/O

• “Event-driven programming”

3

CSE333, Spring 2020L25: Concurrency Intro

Building a Web Search Engine

❖ We need:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

4

CSE333, Spring 2020L25: Concurrency Intro

Simplified Search Engine Architecture

5

query
processor

client
index

file

index
file

index
file

CSE333, Spring 2020L25: Concurrency Intro

Search Engine (Pseudocode) Sequential

6

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

return doclist;

}

main() {

SetupServerToReceiveConnections();

while (1) {

string query_words[] = GetNextQuery();

results = Lookup(query_words[0]);

foreach word in query[1..n] {

results = results.intersect(Lookup(word));

}

Display(results);

}

}

CSE333, Spring 2020L25: Concurrency Intro

Execution Timeline: a Multi-Word Query

7

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CSE333, Spring 2020L25: Concurrency Intro

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

8

CSE333, Spring 2020L25: Concurrency Intro

Execution Timeline: To Scale

9

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

CSE333, Spring 2020L25: Concurrency Intro

Sequential Queries – Simplified

10

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

CSE333, Spring 2020L25: Concurrency Intro

Sequential Queries: To Scale

11

I
/
O

1
.
b

I
/
O

1
.
d

time

query 2

query 1

I
/
O

1
.
b

I
/
O

1
.
d

I
/
O

1
.
b

I
/
O

1
.
d

query 3

CSE333, Spring 2020L25: Concurrency Intro

Web Search Architecture

12

query
processor

client

client

client

client

client

index
file

index
file

index
file

CSE333, Spring 2020L25: Concurrency Intro

Multiple Clients – Simplified

13

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

CSE333, Spring 2020L25: Concurrency Intro

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

❖ The CPU is idle most of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

14

CSE333, Spring 2020L25: Concurrency Intro

Concurrency

❖ A version of the program that executes multiple tasks

simultaneously

▪ Example: Our web server could execute multiple queries at the

same time

• While one is waiting for I/O, another can be executing on the CPU

▪ Example: Execute queries one at a time, but issue I/O requests

against different files/disks simultaneously

• Could read from several index files at once, processing the I/O results

as they arrive

❖ Concurrency != parallelism

▪ Parallelism is executing multiple CPU instructions simultaneously

15

CSE333, Spring 2020L25: Concurrency Intro

A Concurrent Implementation

❖ Use multiple threads or processes

▪ As a query arrives, fork a new thread (or process) to handle it

• The thread reads the query from the network, issues read requests

against files, assembles results and writes back over the network

▪ The OS context switches between threads/processes

• While one is blocked on I/O, another can use the CPU

• Multiple threads’ I/O requests can be issued at once

16

CSE333, Spring 2020L25: Concurrency Intro

Introducing Threads

❖ Separate the concept of a process from an individual

“thread of control”

▪ Usually called a thread (or a lightweight process), this is a

sequential execution stream within a process

❖ In most modern OS’s:

▪ Process: address space, OS resources/process attributes

▪ Thread: stack, stack pointer, program counter, registers

▪ Threads are the unit of scheduling and processes are their

containers; every process has at least one thread running in it
17

thread

CSE333, Spring 2020L25: Concurrency Intro

Multi-threaded Search Engine (Pseudocode)

18

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist

doclist.append(file.read(hit));

return doclist;

}

ProcessQuery(string query_words[]) {

results = Lookup(query_words[0]);

foreach word in query[1..n]

results = results.intersect(Lookup(word));

Display(results);

}

main() {

while (1) {

string query_words[] = GetNextQuery();

CreateThread(ProcessQuery(query_words));

}

}

CSE333, Spring 2020L25: Concurrency Intro

Multithreaded Queries – Simplified

19

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

CSE333, Spring 2020L25: Concurrency Intro

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

20

CSE333, Spring 2020L25: Concurrency Intro

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,

& security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,

& registers

▪ Threads are the unit of scheduling and processes are their

containers; every process has at least one thread running in it

21

CSE333, Spring 2020L25: Concurrency Intro

Threads vs. Processes

22

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CSE333, Spring 2020L25: Concurrency Intro

Threads vs. Processes

23

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CSE333, Spring 2020L25: Concurrency Intro

Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context

switching

▪ Cannot easily share memory between processes – typically

communicate through the file system

24

CSE333, Spring 2020L25: Concurrency Intro

Alternate: Asynchronous I/O

❖ Use asynchronous or non-blocking I/O

❖ Your program begins processing a query

▪ When your program needs to read data to make further progress,

it registers interest in the data with the OS and then switches to a

different query

▪ The OS handles the details of issuing the read on the disk, or

waiting for data from the console (or other devices, like the

network)

▪ When data becomes available, the OS lets your program know

❖ Your program (almost never) blocks on I/O

25

CSE333, Spring 2020L25: Concurrency Intro

Event-Driven Programming

❖ Your program is structured as an event-loop

26

void dispatch(task, event) {

switch (task.state) {

case READING_FROM_CONSOLE:

query_words = event.data;

async_read(index, query_words[0]);

task.state = READING_FROM_INDEX;

return;

case READING_FROM_INDEX:

...

}

}

int main() {

while (1) {

event = OS.GetNextEvent();

task = lookup(event);

dispatch(task, event);

}

}

CSE333, Spring 2020L25: Concurrency Intro

Asynchronous, Event-Driven

27

I
/
O

1
.
b

I
/
O

2
.
b

I
/
O

3
.
b

time

I
/
O

2
.
d

C
P
U

3
.
a

C
P
U

1
.
a

C
P
U

2
.
a

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

2
.
c

I
/
O

3
.
d

C
P
U

1
.
e

C
P
U

2
.
e

C
P
U

3
.
c

C
P
U

3
.
e

CSE333, Spring 2020L25: Concurrency Intro

Non-blocking vs. Asynchronous

❖ Reading from the network can truly block your program

▪ Remote computer may wait arbitrarily long before sending data

❖ Non-blocking I/O (network, console)

▪ Your program enables non-blocking I/O on its file descriptors

▪ Your program issues read() and write() system calls

• If the read/write would block, the system call returns immediately

▪ Program can ask the OS which file descriptors are

readable/writeable

• Program can choose to block while no file descriptors are ready

28

CSE333, Spring 2020L25: Concurrency Intro

Non-blocking vs. Asynchronous

❖ Asynchronous I/O (disk)

▪ Program tells the OS to begin reading/writing

• The “begin_read” or “begin_write” returns immediately

• When the I/O completes, OS delivers an event to the program

❖ According to the Linux specification, the disk never blocks

your program (just delays it)

▪ Asynchronous I/O is primarily used to hide disk latency

▪ Asynchronous I/O system calls are messy and complicated 

29

CSE333, Spring 2020L25: Concurrency Intro

Why Events?

❖ Advantages:

▪ Don’t have to worry about locks and race conditions

▪ For some kinds of programs, especially GUIs, leads to a very

simple and intuitive program structure

• One event handler for each UI element

❖ Disadvantages:

▪ Can lead to very complex structure for programs that do lots of

disk and network I/O

• Sequential code gets broken up into a jumble of small event handlers

• You have to package up all task state between handlers

30

CSE333, Spring 2020L25: Concurrency Intro

One Way to Think About It

❖ Threaded code:

▪ Each thread executes its task sequentially, and per-task state is

naturally stored in the thread’s stack

▪ OS and thread scheduler switch between threads for you

❖ Event-driven code:

▪ *You* are the scheduler

▪ You have to bundle up task state into continuations (data

structures describing what-to-do-next); tasks do not have their

own stacks

31

