
CSE333, Spring 2020L23: Server-side Programming

Server-side Programming
CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:
Ramya Challa Mengqui Chen John Depaszthory
Greg Guo Zachary Keyes CJ Lin
Travis McGaha Arjun Singh Guramrit Singh
Cosmo Wang Yifan Xu Robin Yang
Haoran Yu Velocity Yu

CSE333, Spring 2020L23: Server-side Programming

Socket API: Server TCP Connection

v Pretty similar to clients, but with additional steps:
1) Figure out the IP address and port on which to listen
2) Create a socket
3) bind() the socket to the address(es) and port
4) Tell the socket to listen() for incoming clients
5) accept() a client connection
6) .read() and write() to that connection
7) close() the client socket

3

CSE333, Spring 2020L23: Server-side Programming

Servers

v Servers can have multiple IP addresses (“multihoming”)
§ Usually have at least one externally-visible IP address, as well as a

local-only address (127.0.0.1)

v The goals of a server socket are different than a client
socket
§ Want to bind the socket to a particular port of one or more IP

addresses of the server
§ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the
correct server file descriptor

4

CSE333, Spring 2020L23: Server-side Programming

Step 1: Figure out IP address(es) & Port

v Step 1: getaddrinfo() invocation may or may not be
needed (but we’ll use it)
§ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation
• Even if the machine has a static IP address, don’t wire it into the code

– either look it up dynamically or use a configuration file

§ Can request listen on all local IP addresses by passing NULL as
hostname and setting AI_PASSIVE in hints.ai_flags
• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

5

CSE333, Spring 2020L23: Server-side Programming

Step 2: Create a Socket

v Step 2: socket() call is same as before
§ Can directly use constants or fields from result of
getaddrinfo()

§ Recall that this just returns a file descriptor – IP address and port
are not associated with socket yet

6

CSE333, Spring 2020L23: Server-side Programming

Step 3: Bind the socket

v

§ Looks nearly identical to connect()!
§ Returns 0 on success, -1 on error

v Some specifics for addr:
§ Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?
• POSIX systems can handle IPv4 clients via IPv6 J

§ Port: port in network byte order (htons() is handy)
§ Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)
7

int bind(int sockfd, const struct sockaddr* addr,
socklen_t addrlen);

CSE333, Spring 2020L23: Server-side Programming

Step 4: Listen for Incoming Clients

v

§ Tells the OS that the socket is a listening socket that clients can
connect to

§ backlog: maximum length of connection queue
• Gets truncated, if necessary, to defined constant SOMAXCONN
• The OS will refuse new connections once queue is full until server
accept()s them (removing them from the queue)

§ Returns 0 on success, -1 on error

§ Clients can start connecting to the socket as soon as listen()
returns
• Server can’t use a connection until you accept() it

8

int listen(int sockfd, int backlog);

CSE333, Spring 2020L23: Server-side Programming

Example #1

v See server_bind_listen.cc
§ Takes in a port number from the command line
§ Opens a server socket, prints info, then listens for connections for

20 seconds
• Can connect to it using netcat (nc)

10

CSE333, Spring 2020L23: Server-side Programming

Step 5: Accept a Client Connection

v

§ Returns an active, ready-to-use socket file descriptor connected
to a client (or -1 on error)
• sockfd must have been created, bound, and listening
• Pulls a queued connection or waits for an incoming one

§ addr and addrlen are output parameters
• *addrlen should initially be set to sizeof(*addr), gets

overwritten with the size of the client address
• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address
– Use getnameinfo() to do a reverse DNS lookup on the client

11

int accept(int sockfd, struct sockaddr* addr,
socklen_t* addrlen);

CSE333, Spring 2020L23: Server-side Programming

Example #2

v See server_accept_rw_close.cc
§ Takes in a port number from the command line
§ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

§ Accepts connections as they come
§ Echoes any data the client sends to it on stdout and also sends

it back to the client

12

CSE333, Spring 2020L23: Server-side Programming

Something to Note

v Our server code is not concurrent
§ Single thread of execution
§ The thread blocks while waiting for the next connection
§ The thread blocks waiting for the next message from the

connection

v A crowd of clients is, by nature, concurrent
§ While our server is handling the next client, all other clients are

stuck waiting for it L

13

CSE333, Spring 2020L23: Server-side Programming

hw4 demo

v Multithreaded Web Server (333gle)
§ Don’t worry – multithreading has mostly been written for you
§ ./http333d <port> <static files> <indices+>

§ Some security bugs to fix, too

14

CSE333, Spring 2020L23: Server-side Programming

Extra Exercise #1

v Write a program that:
§ Creates a listening socket that accepts connections from clients
§ Reads a line of text from the client
§ Parses the line of text as a DNS name
§ Does a DNS lookup on the name
§ Writes back to the client the list of IP addresses associated with

the DNS name
§ Closes the connection to the client

15

