
CSE333, Spring 2020L22: Client-side Networking

Client-side Networking
CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:
Ramya Challa Mengqui Chen John Depaszthory
Greg Guo Zachary Keyes CJ Lin
Travis McGaha Arjun Singh Guramrit Singh
Cosmo Wang Yifan Xu Robin Yang
Haoran Yu Velocity Yu

CSE333, Spring 2020L22: Client-side Networking

Administrivia

v HW3 due Thursday night
v Exercise 15 due Monday* – released after Thur. sections

§ Client-side TCP connection

v Companion exercise 16 out end of week, due next Wed.
§ Server-side TCP connection (to talk with your client-side code!)

v *But next Monday is the Memorial Day holiday. How should
we adjust exercise deadlines?
§ We will have regular office hours that day (Thanks TAs!!)

v Catalyst gradebook has (we think) up-to-date late days and
exercise/hw scores. Please let us know if there are goofs.

2

CSE333, Spring 2020L22: Client-side Networking

Socket API: Client TCP Connection

v There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) Connect the socket to the remote server
4) .read() and write() data using the socket
5) Close the socket

3

CSE333, Spring 2020L22: Client-side Networking

Step 1: DNS Lookup

v Details covered in section this week
v See dnsresolve.cc

4

struct addrinfo {
int ai_flags; // additional flags
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes
struct sockaddr* ai_addr; // pointer to socket addr
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can form a linked list

};

CSE333, Spring 2020L22: Client-side Networking

Step 2: Creating a Socket

v Use the socket() system call

§ Creating a socket doesn’t bind it to a local address or port yet
§ Returns file descriptor or -1 on error

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv) {
int socket_fd = socket(AF_INET, SOCK_STREAM, 0);
if (socket_fd == -1) {

std::cerr << strerror(errno) << std::endl;
return EXIT_FAILURE;

}
close(socket_fd);
return EXIT_SUCCESS;

}
5

socket.cc

CSE333, Spring 2020L22: Client-side Networking

Step 3: Connect to the Server

v The connect() system call establishes a connection to
a remote host
§

• sockfd: Socket file description from Step 2
• addr and addrlen: Usually from one of the address structures

returned by getaddrinfo in Step 1 (DNS lookup)
• Returns 0 on success and -1 on error

v connect() may take some time to return
§ It is a blocking call by default
§ The network stack within the OS will communicate with the

remote host to establish a TCP connection to it
• This involves ~2 round trips across the network

int connect(int sockfd, const struct sockaddr* addr,
socklen_t addrlen);

6

CSE333, Spring 2020L22: Client-side Networking

Connect Example

v See connect.cc
// Get an appropriate sockaddr structure.
struct sockaddr_storage addr;
size_t addrlen;
LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.
int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);
if (socket_fd == -1) {

cerr << "socket() failed: " << strerror(errno) << endl;
return EXIT_FAILURE;

}

// Connect the socket to the remote host.
int res = connect(socket_fd,

reinterpret_cast<sockaddr*>(&addr),
addrlen);

if (res == -1) {
cerr << "connect() failed: " << strerror(errno) << endl;

}
7

CSE333, Spring 2020L22: Client-side Networking

Step 4: read()

v If there is data that has already been received by the
network stack, then read will return immediately with it
§ read() might return with less data than you asked for

v If there is no data waiting for you, by default read()
will block until something arrives
§ This might cause deadlock!
§ Can read() return 0?

9

CSE333, Spring 2020L22: Client-side Networking

Step 4: write()

v write() enqueues your data in a send buffer in the OS
and then returns
§ The OS transmits the data over the network in the background
§ When write() returns, the receiver probably has not yet

received the data!

v If there is no more space left in the send buffer, by default
write() will block

11

CSE333, Spring 2020L22: Client-side Networking

Read/Write Example

v See sendreceive.cc
§ Demo

12

while (1) {
int wres = write(socket_fd, readbuf, res);
if (wres == 0) {

cerr << "socket closed prematurely" << endl;
close(socket_fd);
return EXIT_FAILURE;

}
if (wres == -1) {

if (errno == EINTR)
continue;

cerr << "socket write failure: " << strerror(errno) << endl;
close(socket_fd);
return EXIT_FAILURE;

}
break;

}

CSE333, Spring 2020L22: Client-side Networking

Step 5: close()

v

§ Nothing special here – it’s the same function as with file I/O

§ Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

int close(int fd);

13

CSE333, Spring 2020L22: Client-side Networking

Extra Exercise #1

v Write a program that:
§ Reads DNS names, one per line, from stdin
§ Translates each name to one or more IP addresses
§ Prints out each IP address to stdout, one per line

14

