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Lecture Outline

v Network Programming
§ Sockets API
§ Network Addresses
§ DNS Lookup
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Files and File Descriptors

v Remember open(), read(), write(), and 
close()?
§ POSIX system calls for interacting with files
§ open() returns a file descriptor

• An integer that represents an open file
• This file descriptor is then passed to read(), write(), and 
close()

§ Inside the OS, the file descriptor is used to index into a table that 
keeps track of any OS-level state associated with the file, such as 
the file position
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Networks and Sockets

v UNIX likes to make all I/O look like file I/O
§ You use read() and write() to communicate with remove 

computers over the network!
§ A file descriptor use for network communications is called a 

socket
§ Just like with files:

• Your program can have multiple network channels open at once
• You need to pass a file descriptor to read() and write() to let the 

OS know which network channel to use
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File Descriptor Table
OS’s File Descriptor Table for the Process

File 
Descriptor Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3 TCP 
socket

local:  128.95.4.33:80
remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9 TCP 
socket

local:  128.95.4.33:80
remote: 102.12.3.4:5544

Web Server

in
de

x.
ht

m
l

pi
c.

pn
g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

5



CSE333, Spring 2020L21:  IP Addresses, DNS

Types of Sockets

v Stream sockets
§ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, SCTP, or other stream transports

v Datagram sockets
§ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

v Raw sockets
§ For layer-3 communication (raw IP packet manipulation)
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Stream Sockets

v Typically used for client-server communications
§ Client: An application that establishes a connection to a server
§ Server: An application that receives connections from clients
§ Can also be used for other forms of communication like peer-to-

peer

1) Establish connection:

2) Communicate:

3) Close connection: client server

client server
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Datagram Sockets

v Often used as a building block
§ No flow control, ordering, or reliability, so used less frequently
§ e.g. streaming media applications or DNS lookups

1) Create sockets:

2) Communicate:

host

host host

host

host

host host

host
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The Sockets API

v Berkeley sockets originated in 4.2BSD Unix (1983)
§ It is the standard API for network programming

• Available on most OSs

§ Written in C

v POSIX Socket API
§ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced
• Better support for multi-threading was added
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Socket API: Client TCP Connection

v We’ll start by looking at the API from the point of view of 
a client connecting to a server over TCP

v There are five steps:
1) Figure out the IP address and port to which to connect
2) Create a socket
3) Connect the socket to the remote server
4) .read() and write() data using the socket
5) Close the socket
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Step 1: Figure Out IP Address and Port

v Several parts:
§ Network addresses
§ Data structures for address info
§ DNS - Doman Name System – finding IP addresses
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IPv4 Network Addresses

v An IPv4 address is a 4-byte tuple
§ For humans, written in “dotted-decimal notation”
§ e.g. 128.95.4.1  (80:5f:04:01 in hex)

v IPv4 address exhaustion
§ There are 232 ≈ 4.3 billion IPv4 addresses
§ There are ≈ 7.6 billion people in the world (March 2018)
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IPv6 Network Addresses

v An IPv6 address is a 16-byte tuple
§ Typically written in “hextets” (groups of 4 hex digits)

• Can omit leading zeros in hextets
• Double-colon replaces consecutive sections of zeros

§ e.g. 2d01:0db8:f188:0000:0000:0000:0000:1f33
• Shorthand:  2d01:db8:f188::1f33

§ Transition is still ongoing
• IPv4-mapped IPv6 addresses

– 128.95.4.1 mapped to ::ffff:128.95.4.1 or ::ffff:805f:401

• This unfortunately makes network programming more of a headache 
L
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Linux Socket Addresses
v Structures, constants, and helper functions available in 
#include <arpa/inet.h>

v Addresses stored in network byte order (big endian)

v Converting between host and network byte orders:
§ uint32_t htonl(uint32_t hostlong);
§ uint32_t ntohl(uint32_t netlong);

• ‘h’ for host byte order and ‘n’ for network byte order
• Also versions with ‘s’ for short (uint16_t instead)

v How to handle both IPv4 and IPv6?
§ Use C structs for each, but make them somewhat similar
§ Use defined constants to differentiate when to use each: AF_INET for 

IPv4 and AF_INET6 for IPv6
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IPv4 Address Structures
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// IPv4 4-byte address
struct in_addr {       

uint32_t s_addr;            // Address in network byte order
};

// An IPv4-specific address structure
struct sockaddr_in {   

sa_family_t sin_family;   // Address family: AF_INET
in_port_t sin_port;     // Port in network byte order
struct in_addr sin_addr;     // IPv4 address
unsigned char  sin_zero[8];  // Pad out to 16 bytes

};

family port addr zero

struct sockaddr_in:
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IPv6 Address Structures
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// IPv6 16-byte address
struct in6_addr {

uint8_t s6_addr[16];        // Address in network byte order
};

// An IPv6-specific address structure
struct sockaddr_in6 {

sa_family_t sin6_family;    // Address family: AF_INET6
in_port_t sin6_port;      // Port number
uint32_t sin6_flowinfo;  // IPv6 flow information
struct in6_addr sin6_addr;      // IPv6 address
uint32_t sin6_scope_id;  // Scope ID

};

fam port flow scope

struct sockaddr_in6:
addr

240 2 4 8 28
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Generic Address Structures

§ Commonly create struct sockaddr_storage, then pass 
pointer cast as struct sockaddr* to connect()

18

// A mostly-protocol-independent address structure.
// Pointer to this is parameter type for socket system calls.
struct sockaddr {

sa_family_t sa_family;    // Address family (AF_* constants)
char sa_data[14];  // Socket address (size varies

// according to socket domain)
};

// A structure big enough to hold either IPv4 or IPv6 structs
struct sockaddr_storage {

sa_family_t ss_family;    // Address family

// padding and alignment; don’t worry about the details
char __ss_pad1[_SS_PAD1SIZE];
int64_t __ss_align;
char __ss_pad2[_SS_PAD2SIZE];

};
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Address Conversion
v int inet_pton(int af, const char* src, void* dst);

§ Converts human-readable string representation (“presentation”) 
to network byte ordered address

§ Returns 1 (success), 0 (bad src), or -1 (error)
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#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr_in sa;    // IPv4
struct sockaddr_in6 sa6;  // IPv6

// IPv4 string to sockaddr_in (192.0.2.1 = C0:00:02:01).
inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

// IPv6 string to sockaddr_in6.
inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

return EXIT_SUCCESS;
}

genaddr.cc

int inet_pton(int af, const char* src, void* dst);
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Address Conversion
v int inet_pton(int af, const char* src, void* dst);

§ Converts network addr in src into buffer dst of size size
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#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr_in6 sa6;         // IPv6
char astring[INET6_ADDRSTRLEN];  // IPv6

// IPv6 string to sockaddr_in6.
inet_pton(AF_INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6_addr));

// sockaddr_in6 to IPv6 string.
inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);
std::cout << astring << std::endl;

return EXIT_SUCCESS;
}

genstring.cc

const char* inet_ntop(int af, const void* src, 
char* dst, socklen_t size);
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Domain Name System

v People tend to use DNS names, not IP addresses
§ The Sockets API lets you convert between the two
§ It’s a complicated process, though:

• A given DNS name can have many IP addresses
• Many different IP addresses can map to the same DNS name

– An IP address will reverse map into at most one DNS name

• A DNS lookup may require interacting with many DNS servers

v You can use the Linux program “dig” to explore DNS
§ dig @server name type (+short)

• server:  specific name server to query
• type:  A (IPv4), AAAA (IPv6), ANY (includes all types)
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DNS Hierarchy
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.

mail newsdocs www

cncom orgedu • • •

google netflixfacebook • • • wikipedia fsfapache • • •

Root 
Name Servers

Top-level 
Domain Servers

• • • news www• • •
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Resolving DNS Names

v The POSIX way is to use getaddrinfo()
§ A complicated system call found in #include <netdb.h>

§ Basic idea:

• Tell getaddrinfo() which host and port you want resolved
– String representation for host: DNS name or IP address

• Set up a “hints” structure with constraints you want respected
• getaddrinfo() gives you a list of results packed into an 

“addrinfo” structure/linked list
– Returns 0 on success; returns negative number on failure

• Free the struct addrinfo later using freeaddrinfo()
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int getaddrinfo(const char* hostname, 
const char* service, 
const struct addrinfo* hints, 
struct addrinfo** res);
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getaddrinfo

v getaddrinfo() arguments:
§ hostname – domain name or IP address string
§ service – port # (e.g. "80") or service name (e.g. "www") 

or NULL/nullptr
§

§ See dnsresolve.cc
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struct addrinfo {
int ai_flags;          // additional flags
int ai_family;         // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype;       // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol;       // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen;        // length of socket addr in bytes
struct sockaddr* ai_addr;  // pointer to socket addr
char*   ai_canonname;      // canonical name
struct addrinfo* ai_next;  // can form a linked list

};


