
CSE333, Spring 2020L21: IP Addresses, DNS

IP Addresses, DNS
CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:
Ramya Challa Mengqui Chen John Depaszthory
Greg Guo Zachary Keyes CJ Lin
Travis McGaha Arjun Singh Guramrit Singh
Cosmo Wang Yifan Xu Robin Yang
Haoran Yu Velocity Yu

CSE333, Spring 2020L21: IP Addresses, DNS

Lecture Outline

v Network Programming
§ Sockets API
§ Network Addresses
§ DNS Lookup

2

CSE333, Spring 2020L21: IP Addresses, DNS

Files and File Descriptors

v Remember open(), read(), write(), and
close()?
§ POSIX system calls for interacting with files
§ open() returns a file descriptor

• An integer that represents an open file
• This file descriptor is then passed to read(), write(), and
close()

§ Inside the OS, the file descriptor is used to index into a table that
keeps track of any OS-level state associated with the file, such as
the file position

3

CSE333, Spring 2020L21: IP Addresses, DNS

Networks and Sockets

v UNIX likes to make all I/O look like file I/O
§ You use read() and write() to communicate with remove

computers over the network!
§ A file descriptor use for network communications is called a

socket
§ Just like with files:

• Your program can have multiple network channels open at once
• You need to pass a file descriptor to read() and write() to let the

OS know which network channel to use

4

CSE333, Spring 2020L21: IP Addresses, DNS

File Descriptor Table
OS’s File Descriptor Table for the Process

File
Descriptor Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3 TCP
socket

local: 128.95.4.33:80
remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9 TCP
socket

local: 128.95.4.33:80
remote: 102.12.3.4:5544

Web Server

in
de

x.
ht

m
l

pi
c.

pn
g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

5

CSE333, Spring 2020L21: IP Addresses, DNS

Types of Sockets

v Stream sockets
§ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, SCTP, or other stream transports

v Datagram sockets
§ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

v Raw sockets
§ For layer-3 communication (raw IP packet manipulation)

6

CSE333, Spring 2020L21: IP Addresses, DNS

Stream Sockets

v Typically used for client-server communications
§ Client: An application that establishes a connection to a server
§ Server: An application that receives connections from clients
§ Can also be used for other forms of communication like peer-to-

peer

1) Establish connection:

2) Communicate:

3) Close connection: client server

client server

7

client server

CSE333, Spring 2020L21: IP Addresses, DNS

Datagram Sockets

v Often used as a building block
§ No flow control, ordering, or reliability, so used less frequently
§ e.g. streaming media applications or DNS lookups

1) Create sockets:

2) Communicate:

host

host host

host

host

host host

host

8

CSE333, Spring 2020L21: IP Addresses, DNS

The Sockets API

v Berkeley sockets originated in 4.2BSD Unix (1983)
§ It is the standard API for network programming

• Available on most OSs

§ Written in C

v POSIX Socket API
§ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced
• Better support for multi-threading was added

9

CSE333, Spring 2020L21: IP Addresses, DNS

Socket API: Client TCP Connection

v We’ll start by looking at the API from the point of view of
a client connecting to a server over TCP

v There are five steps:
1) Figure out the IP address and port to which to connect
2) Create a socket
3) Connect the socket to the remote server
4) .read() and write() data using the socket
5) Close the socket

10

CSE333, Spring 2020L21: IP Addresses, DNS

Step 1: Figure Out IP Address and Port

v Several parts:
§ Network addresses
§ Data structures for address info
§ DNS - Doman Name System – finding IP addresses

11

CSE333, Spring 2020L21: IP Addresses, DNS

IPv4 Network Addresses

v An IPv4 address is a 4-byte tuple
§ For humans, written in “dotted-decimal notation”
§ e.g. 128.95.4.1 (80:5f:04:01 in hex)

v IPv4 address exhaustion
§ There are 232 ≈ 4.3 billion IPv4 addresses
§ There are ≈ 7.6 billion people in the world (March 2018)

12

CSE333, Spring 2020L21: IP Addresses, DNS

IPv6 Network Addresses

v An IPv6 address is a 16-byte tuple
§ Typically written in “hextets” (groups of 4 hex digits)

• Can omit leading zeros in hextets
• Double-colon replaces consecutive sections of zeros

§ e.g. 2d01:0db8:f188:0000:0000:0000:0000:1f33
• Shorthand: 2d01:db8:f188::1f33

§ Transition is still ongoing
• IPv4-mapped IPv6 addresses

– 128.95.4.1 mapped to ::ffff:128.95.4.1 or ::ffff:805f:401

• This unfortunately makes network programming more of a headache
L

13

CSE333, Spring 2020L21: IP Addresses, DNS

Linux Socket Addresses
v Structures, constants, and helper functions available in
#include <arpa/inet.h>

v Addresses stored in network byte order (big endian)

v Converting between host and network byte orders:
§ uint32_t htonl(uint32_t hostlong);
§ uint32_t ntohl(uint32_t netlong);

• ‘h’ for host byte order and ‘n’ for network byte order
• Also versions with ‘s’ for short (uint16_t instead)

v How to handle both IPv4 and IPv6?
§ Use C structs for each, but make them somewhat similar
§ Use defined constants to differentiate when to use each: AF_INET for

IPv4 and AF_INET6 for IPv6

14

CSE333, Spring 2020L21: IP Addresses, DNS

IPv4 Address Structures

15

// IPv4 4-byte address
struct in_addr {

uint32_t s_addr; // Address in network byte order
};

// An IPv4-specific address structure
struct sockaddr_in {

sa_family_t sin_family; // Address family: AF_INET
in_port_t sin_port; // Port in network byte order
struct in_addr sin_addr; // IPv4 address
unsigned char sin_zero[8]; // Pad out to 16 bytes

};

family port addr zero

struct sockaddr_in:

160 2 4 8

CSE333, Spring 2020L21: IP Addresses, DNS

IPv6 Address Structures

17

// IPv6 16-byte address
struct in6_addr {

uint8_t s6_addr[16]; // Address in network byte order
};

// An IPv6-specific address structure
struct sockaddr_in6 {

sa_family_t sin6_family; // Address family: AF_INET6
in_port_t sin6_port; // Port number
uint32_t sin6_flowinfo; // IPv6 flow information
struct in6_addr sin6_addr; // IPv6 address
uint32_t sin6_scope_id; // Scope ID

};

fam port flow scope

struct sockaddr_in6:
addr

240 2 4 8 28

CSE333, Spring 2020L21: IP Addresses, DNS

Generic Address Structures

§ Commonly create struct sockaddr_storage, then pass
pointer cast as struct sockaddr* to connect()

18

// A mostly-protocol-independent address structure.
// Pointer to this is parameter type for socket system calls.
struct sockaddr {

sa_family_t sa_family; // Address family (AF_* constants)
char sa_data[14]; // Socket address (size varies

// according to socket domain)
};

// A structure big enough to hold either IPv4 or IPv6 structs
struct sockaddr_storage {

sa_family_t ss_family; // Address family

// padding and alignment; don’t worry about the details
char __ss_pad1[_SS_PAD1SIZE];
int64_t __ss_align;
char __ss_pad2[_SS_PAD2SIZE];

};

CSE333, Spring 2020L21: IP Addresses, DNS

Address Conversion
v int inet_pton(int af, const char* src, void* dst);

§ Converts human-readable string representation (“presentation”)
to network byte ordered address

§ Returns 1 (success), 0 (bad src), or -1 (error)

19

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr_in sa; // IPv4
struct sockaddr_in6 sa6; // IPv6

// IPv4 string to sockaddr_in (192.0.2.1 = C0:00:02:01).
inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

// IPv6 string to sockaddr_in6.
inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

return EXIT_SUCCESS;
}

genaddr.cc

int inet_pton(int af, const char* src, void* dst);

CSE333, Spring 2020L21: IP Addresses, DNS

Address Conversion
v int inet_pton(int af, const char* src, void* dst);

§ Converts network addr in src into buffer dst of size size

20

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr_in6 sa6; // IPv6
char astring[INET6_ADDRSTRLEN]; // IPv6

// IPv6 string to sockaddr_in6.
inet_pton(AF_INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6_addr));

// sockaddr_in6 to IPv6 string.
inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);
std::cout << astring << std::endl;

return EXIT_SUCCESS;
}

genstring.cc

const char* inet_ntop(int af, const void* src,
char* dst, socklen_t size);

CSE333, Spring 2020L21: IP Addresses, DNS

Domain Name System

v People tend to use DNS names, not IP addresses
§ The Sockets API lets you convert between the two
§ It’s a complicated process, though:

• A given DNS name can have many IP addresses
• Many different IP addresses can map to the same DNS name

– An IP address will reverse map into at most one DNS name

• A DNS lookup may require interacting with many DNS servers

v You can use the Linux program “dig” to explore DNS
§ dig @server name type (+short)

• server: specific name server to query
• type: A (IPv4), AAAA (IPv6), ANY (includes all types)

21

CSE333, Spring 2020L21: IP Addresses, DNS

DNS Hierarchy

22

.

mail newsdocs www

cncom orgedu • • •

google netflixfacebook • • • wikipedia fsfapache • • •

Root
Name Servers

Top-level
Domain Servers

• • • news www• • •

CSE333, Spring 2020L21: IP Addresses, DNS

Resolving DNS Names

v The POSIX way is to use getaddrinfo()
§ A complicated system call found in #include <netdb.h>

§ Basic idea:

• Tell getaddrinfo() which host and port you want resolved
– String representation for host: DNS name or IP address

• Set up a “hints” structure with constraints you want respected
• getaddrinfo() gives you a list of results packed into an

“addrinfo” structure/linked list
– Returns 0 on success; returns negative number on failure

• Free the struct addrinfo later using freeaddrinfo()

23

int getaddrinfo(const char* hostname,
const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

CSE333, Spring 2020L21: IP Addresses, DNS

getaddrinfo

v getaddrinfo() arguments:
§ hostname – domain name or IP address string
§ service – port # (e.g. "80") or service name (e.g. "www")

or NULL/nullptr
§

§ See dnsresolve.cc

24

struct addrinfo {
int ai_flags; // additional flags
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes
struct sockaddr* ai_addr; // pointer to socket addr
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can form a linked list

};

