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Administrivia

v Happy Today-Is-Not-a-Midterm Friday!
v Because we don’t have a midterm, we’re actually a bit 

ahead of schedule
v Since we have the time, and because hw3 is the most 

time-consuming part of the project, we’d like to allow 
more time to work on it.  Proposal:
§ HW3 due Thursday, May 21 (not May 14)
§ HW4 due Thursday, June 4 (last week of class)
§ Any objections?

v But there still will be exercises: new exercise out today, 
due Monday morning; and keep working on hw3  J
§ (it’s ex14: don’t panic, we’ve skipped ex13 until next week. JJ)
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HW3 Tip

v HW3 writes some pretty big index files
§ Hundreds of thousands of write operations
§ No problem for today’s fast machines and disks!!

v Except...
§ If you’re running on attu or a CSE lab linux workstation, every 

write to your personal directories goes to a network file server(!)
• ∴ Lots of slow network packets vs full-speed disks — can take much 

longer to write an index to a server vs. a few sec. locally (!!)
• Suggestion: write index files to /tmp/... . That’s a local scratch disk 

and is very fast. But please clean up when you’re done.
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Lecture Outline

v C++ Inheritance
§ Static Dispatch
§ Abstract Classes
§ Constructors and Destructors
§ Assignment

v C++ Casting

v Reference:  C++ Primer, Chapter 15
4
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What happens if we omit “virtual”?
v By default, without virtual, methods are dispatched statically

§ At compile time, the compiler writes in a call to the address of the 
class’ method in the .text segment
• Based on the compile-time visible type of the callee

§ This is different than Java
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class Derived : public Base { ... };

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->foo();
bp->foo();
return 0;

}

Derived::foo()
...

Base::foo()
...
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Static Dispatch Example

v Removed virtual on methods:
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DividendStock dividend();
DividendStock* ds = &dividend;
Stock* s = &dividend;

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes Stock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.  
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit();

// invokes Stock::GetProfit().
// Stock::GetProfit() invokes Stock::GetMarketValue(). 
s->GetProfit();

double Stock::GetMarketValue() const;
double Stock::GetProfit() const;

Stock.h
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virtual is “sticky”

v If X::f() is declared virtual, then a vtable will be 
created for class X and for all of its subclasses
§ The vtables will include function pointers for (the correct) f

v f() will be called using dynamic dispatch even if 
overridden in a derived class without the virtual
keyword
§ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use 
virtual in derived classes?  Recent style guides say just use 
override, but you’ll sometimes see both, particularly in older code
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Why Not Always Use virtual?

v Two (fairly uncommon) reasons:
§ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)
• A class with no virtual functions has objects without a vptr field

§ Control:
• If f() calls g() in class X and g is not virtual, we’re guaranteed to 

call X::g() and not g() in some subclass
– Particularly useful for framework design

v In Java, all methods are virtual, except static class 
methods, which aren’t associated with objects

v In C++ and C#, you can pick what you want
§ Omitting virtual can cause obscure bugs
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Mixed Dispatch
v Which function is called is a mix of both compile time and 

runtime decisions as well as how you call the function
§ If called on an object (e.g. obj.Fcn()), usually optimized into a 

hard-coded function call at compile time
§ If called via a pointer or reference:
PromisedT *ptr = new ActualT;
ptr->Fcn();  // which version is called?
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Mixed Dispatch Example
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class A {
public:

void m1() { cout << "a1"; }
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1"; }
void m2() { cout << "b2"; }

};

void main(int argc, 
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1();  // 
a_ptr_a->m2();  // 

a_ptr_b->m1();  // 
a_ptr_b->m2();  // 

b_ptr_b->m1();  // 
b_ptr_b->m2();  // 

}

mixed.cc
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Mixed Dispatch Example
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class A {
public:
// m1 will use static dispatch
void m1() { cout << "a1, "; }
// m2 will use dynamic dispatch
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1, "; }
// m2 is still virtual by default
void m2() { cout << "b2"; }

};

void main(int argc, 
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1();  // a1
a_ptr_a->m2();  // a2

a_ptr_b->m1();  // a1
a_ptr_b->m2();  // b2

b_ptr_b->m1();  // b1
b_ptr_b->m2();  // b2

}

mixed.cc
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Abstract Classes

v Sometimes we want to include a function in a class but 
only implement it in derived classes
§ In Java, we would use an abstract method
§ In C++, we use a “pure virtual” function

• Example:  virtual string noise() = 0;

v A class containing any pure virtual methods is abstract
§ You can’t create instances of an abstract class
§ Extend abstract classes and override methods to use them

v A class containing only pure virtual methods is the same 
as a Java interface
§ Pure type specification without implementations

virtual string noise() = 0;
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Lecture Outline

v C++ Inheritance
§ Static Dispatch
§ Abstract Classes
§ Constructors and Destructors
§ Assignment

v C++ Casting

v Reference:  C++ Primer, Chapter 15
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Derived-Class Objects

v A derived object contains “subobjects” corresponding to 
the data members inherited from each base class
§ No guarantees about how these are laid out in memory (not even 

contiguousness between subobjects)

v Conceptual structure of DividendStock object:

members inherited 
from Stock

symbol_
total_shares_
total_cost_
current_price_

members defined by 
DividendStock

dividends_
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Constructors and Inheritance

v A derived class does not inherit the base class’ 
constructor
§ The derived class must have its own constructor
§ A synthesized default constructor for the derived class first 

invokes the default constructor of the base class and then 
initialize the derived class’ member variables
• Compiler error if the base class has no default constructor

§ The base class constructor is invoked before the constructor of 
the derived class
• You can use the initialization list of the derived class to specify which 

base class constructor to use
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Constructor Examples
class Base {  // no default ctor
public:
Base(int y) : y(y) { }
int y;

};

// Compiler error when you try to 
// instantiate a Der1, as the
// synthesized default ctor needs 
// to invoke Base's default ctor.
class Der1 : public Base {
public:
int z;

};

class Der2 : public Base {
public:
Der2(int y, int z) 

: Base(y), z(z) { }
int z;

};

badctor.cc
// has default ctor
class Base {
public:
int y;

};

// works now
class Der1 : public Base {
public:
int z;

};

// still works
class Der2 : public Base {
public:
Der2(int z) : z(z) { }
int z;

};

goodctor.cc
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Destructors and Inheritance

v Destructor of a derived 
class:
§ First runs body of the dtor
§ Then invokes of the dtor

of the base class

v Static dispatch of 
destructors is almost 
always a mistake!
§ Good habit to always 

define a dtor as virtual
• Empty body if there’s

no work to do

class Base {
public:
Base() { x = new int; }
~Base() { delete x; }
int* x;

};

class Der1 : public Base {
public:
Der1() { y = new int; }
~Der1() { delete y; }
int* y;

};

void foo() {
Base* b0ptr = new Base;
Base* b1ptr = new Der1;

delete b0ptr;  // OK
delete b1ptr;  // leaks Der1::y

}

baddtor.cc
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Assignment and Inheritance

v C++ allows you to assign 
the value of a derived 
class to an instance of 
a base class
§ Known as object slicing

• It’s legal since b=d passes
type checking rules

• But b doesn’t have space
for any extra fields in d

class Base {
public:
Base(int x) : x_(x) { }
int x_;

};

class Der1 : public Base {
public:
Der1(int y) : Base(16), y_(y) { }
int y_;

};

void foo() {
Base b(1);
Der1 d(2);

d = b;  // compiler error
b = d;  // what happens to y_?

}

slicing.cc
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STL and Inheritance

v Recall:  STL containers store copies of values
§ What happens when we want to store mixes of object types in a 

single container?  (e.g. Stock and DividendStock)
§ You get sliced L

23

#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> li;

li.push_back(s);   // OK
li.push_back(ds);  // OUCH!

return 0;
}
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STL and Inheritance

v Instead, store pointers to heap-allocated objects in STL 
containers
§ No slicing! J
§ sort() does the wrong thing L
§ You have to remember to delete your objects before 

destroying the container L
• Smart pointers!
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Lecture Outline

v C++ Inheritance
§ Static Dispatch
§ Abstract Classes
§ Constructors and Destructors
§ Assignment

v C++ Casting

v Reference:  C++ Primer §4.11.3, 19.2.1
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Explicit Casting in C

v Simple syntax:  lhs = (new_type) rhs;
v Used to:

§ Convert between pointers of arbitrary type
• Don’t change the data, but treat differently

§ Forcibly convert a primitive type to another
• Actually changes the representation

v You can still use C-style casting in C++, but sometimes the 
intent is not clear
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lhs = (new_type) rhs;
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Casting in C++

v C++ provides an alternative casting style that is more 
informative:
§ static_cast<to_type>(expression)

§ dynamic_cast<to_type>(expression)

§ const_cast<to_type>(expression)

§ reinterpret_cast<to_type>(expression)

v Always use these in C++ code
§ Intent is clearer
§ Easier to find in code via searching
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static_cast

v static_cast can convert:
§ Pointers to classes of related type

• Compiler error if classes are not related
• Dangerous to cast down a class hierarchy

§ Non-pointer conversion
• e.g. float to int

v static_cast is 
checked at compile time
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class A {
public:
int x;

};

class B {
public:
float x;

};

class C : public B {
public:
char x;

};

void foo() {
B b; C c;

// compiler error
A* aptr = static_cast<A*>(&b);
// OK
B* bptr = static_cast<B*>(&c); 
// compiles, but dangerous
C* cptr = static_cast<C*>(&b);

}

staticcast.cc
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dynamic_cast

v dynamic_cast can convert:
§ Pointers to classes of related type
§ References to classes of related type

v dynamic_cast is checked at both
compile time and
run time
§ Casts between 

unrelated classes fail 
at compile time

§ Casts from base to 
derived fail at run 
time if the pointed-to 
object is not the
derived type
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void bar() {
Base b; Der1 d;

// OK (run-time check passes)
Base* bptr = dynamic_cast<Base*>(&d);
assert(bptr != nullptr);

// OK (run-time check passes)
Der1* dptr = dynamic_cast<Der1*>(bptr);
assert(dptr != nullptr);

// Run-time check fails, returns nullptr
bptr = &b;
dptr = dynamic_cast<Der1*>(bptr);
assert(dptr != nullptr);

}

dynamiccast.cc
class Base {
public:
virtual void foo() { }
float x;

};

class Der1 : public Base {
public:
char x;

};
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const_cast

v const_cast adds or strips const-ness
§ Dangerous (!)
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void foo(int* x) {
*x++;

}

void bar(const int* x) {
foo(x);                    // compiler error
foo(const_cast<int*>(x));  // succeeds

}

int main(int argc, char** argv) {
int x = 7;
bar(&x);
return 0;

}
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reinterpret_cast

v reinterpret_cast casts between incompatible types
§ Low-level reinterpretation of the bit pattern
§ e.g. storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough

§ Converting between incompatible pointers
• Dangerous (!)
• This is used (carefully) in hw3
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Implicit Conversion

v The compiler tries to infer some kinds of conversions
§ When types are not equal and you don’t specify an explicit cast, 

the compiler looks for an acceptable implicit conversion
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void bar(std::string x);

void foo() {
int x = 5.7;  // conversion, float -> int
bar("hi");    // conversion, (const char*) -> string
char c = x;   // conversion, int -> char

}
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Sneaky Implicit Conversions

v (const char*) to string conversion?
§ If a class has a constructor with a single parameter, the compiler 

will exploit it to perform implicit conversions
§ At most, one user-defined implicit conversion will happen

• Can do int→ Foo, but not int→ Foo→ Baz
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class Foo {
public:
Foo(int x) : x(x) { }
int x;

};

int Bar(Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5);  // equivalent to return Bar(Foo(5));

}
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Avoiding Sneaky Implicits

v Declare one-argument constructors as explicit if you 
want to disable them from being used as an implicit 
conversion path
§ Usually a good idea
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class Foo {
public:
explicit Foo(int x) : x(x) { }
int x;

};

int Bar(Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5);  // compiler error

}



CSE333, Spring 2020L19:  C++ Inheritance II, Casting

Extra Exercise #1

v Design a class hierarchy to represent shapes
§ e.g. Circle, Triangle, Square

v Implement methods that:
§ Construct shapes
§ Move a shape (i.e. add (x,y) to the shape position)
§ Returns the centroid of the shape
§ Returns the area of the shape
§ Print(), which prints out the details of a shape
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Extra Exercise #2

v Implement a program that uses Extra Exercise #1 (shapes 
class hierarchy):
§ Constructs a vector of shapes
§ Sorts the vector according to the area of the shape
§ Prints out each member of the vector

v Notes:
§ Avoid slicing!
§ Make sure the sorting works properly!
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