
CSE333, Spring 2020L19: C++ Inheritance II, Casting

C++ Inheritance II, Casting
CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:
Ramya Challa Mengqui Chen John Depaszthory
Greg Guo Zachary Keyes CJ Lin
Travis McGaha Arjun Singh Guramrit Singh
Cosmo Wang Yifan Xu Robin Yang
Haoran Yu Velocity Yu

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Administrivia

v Happy Today-Is-Not-a-Midterm Friday!
v Because we don’t have a midterm, we’re actually a bit

ahead of schedule
v Since we have the time, and because hw3 is the most

time-consuming part of the project, we’d like to allow
more time to work on it. Proposal:
§ HW3 due Thursday, May 21 (not May 14)
§ HW4 due Thursday, June 4 (last week of class)
§ Any objections?

v But there still will be exercises: new exercise out today,
due Monday morning; and keep working on hw3 J
§ (it’s ex14: don’t panic, we’ve skipped ex13 until next week. JJ)

2

CSE333, Spring 2020L19: C++ Inheritance II, Casting

HW3 Tip

v HW3 writes some pretty big index files
§ Hundreds of thousands of write operations
§ No problem for today’s fast machines and disks!!

v Except...
§ If you’re running on attu or a CSE lab linux workstation, every

write to your personal directories goes to a network file server(!)
• ∴ Lots of slow network packets vs full-speed disks — can take much

longer to write an index to a server vs. a few sec. locally (!!)
• Suggestion: write index files to /tmp/... . That’s a local scratch disk

and is very fast. But please clean up when you’re done.

3

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Lecture Outline

v C++ Inheritance
§ Static Dispatch
§ Abstract Classes
§ Constructors and Destructors
§ Assignment

v C++ Casting

v Reference: C++ Primer, Chapter 15
4

CSE333, Spring 2020L19: C++ Inheritance II, Casting

What happens if we omit “virtual”?
v By default, without virtual, methods are dispatched statically

§ At compile time, the compiler writes in a call to the address of the
class’ method in the .text segment
• Based on the compile-time visible type of the callee

§ This is different than Java

5

class Derived : public Base { ... };

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->foo();
bp->foo();
return 0;

}

Derived::foo()
...

Base::foo()
...

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Static Dispatch Example

v Removed virtual on methods:

6

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes Stock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit();

// invokes Stock::GetProfit().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s->GetProfit();

double Stock::GetMarketValue() const;
double Stock::GetProfit() const;

Stock.h

CSE333, Spring 2020L19: C++ Inheritance II, Casting

virtual is “sticky”

v If X::f() is declared virtual, then a vtable will be
created for class X and for all of its subclasses
§ The vtables will include function pointers for (the correct) f

v f() will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword
§ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code

7

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Why Not Always Use virtual?

v Two (fairly uncommon) reasons:
§ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)
• A class with no virtual functions has objects without a vptr field

§ Control:
• If f() calls g() in class X and g is not virtual, we’re guaranteed to

call X::g() and not g() in some subclass
– Particularly useful for framework design

v In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

v In C++ and C#, you can pick what you want
§ Omitting virtual can cause obscure bugs

8

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Mixed Dispatch
v Which function is called is a mix of both compile time and

runtime decisions as well as how you call the function
§ If called on an object (e.g. obj.Fcn()), usually optimized into a

hard-coded function call at compile time
§ If called via a pointer or reference:
PromisedT *ptr = new ActualT;
ptr->Fcn(); // which version is called?

9

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Mixed Dispatch Example

12

class A {
public:

void m1() { cout << "a1"; }
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1"; }
void m2() { cout << "b2"; }

};

void main(int argc,
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1(); //
a_ptr_a->m2(); //

a_ptr_b->m1(); //
a_ptr_b->m2(); //

b_ptr_b->m1(); //
b_ptr_b->m2(); //

}

mixed.cc

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Mixed Dispatch Example

13

class A {
public:
// m1 will use static dispatch
void m1() { cout << "a1, "; }
// m2 will use dynamic dispatch
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1, "; }
// m2 is still virtual by default
void m2() { cout << "b2"; }

};

void main(int argc,
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1(); // a1
a_ptr_a->m2(); // a2

a_ptr_b->m1(); // a1
a_ptr_b->m2(); // b2

b_ptr_b->m1(); // b1
b_ptr_b->m2(); // b2

}

mixed.cc

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Abstract Classes

v Sometimes we want to include a function in a class but
only implement it in derived classes
§ In Java, we would use an abstract method
§ In C++, we use a “pure virtual” function

• Example: virtual string noise() = 0;

v A class containing any pure virtual methods is abstract
§ You can’t create instances of an abstract class
§ Extend abstract classes and override methods to use them

v A class containing only pure virtual methods is the same
as a Java interface
§ Pure type specification without implementations

virtual string noise() = 0;

16

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Lecture Outline

v C++ Inheritance
§ Static Dispatch
§ Abstract Classes
§ Constructors and Destructors
§ Assignment

v C++ Casting

v Reference: C++ Primer, Chapter 15
17

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Derived-Class Objects

v A derived object contains “subobjects” corresponding to
the data members inherited from each base class
§ No guarantees about how these are laid out in memory (not even

contiguousness between subobjects)

v Conceptual structure of DividendStock object:

members inherited
from Stock

symbol_
total_shares_
total_cost_
current_price_

members defined by
DividendStock

dividends_

18

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Constructors and Inheritance

v A derived class does not inherit the base class’
constructor
§ The derived class must have its own constructor
§ A synthesized default constructor for the derived class first

invokes the default constructor of the base class and then
initialize the derived class’ member variables
• Compiler error if the base class has no default constructor

§ The base class constructor is invoked before the constructor of
the derived class
• You can use the initialization list of the derived class to specify which

base class constructor to use

19

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Constructor Examples
class Base { // no default ctor
public:
Base(int y) : y(y) { }
int y;

};

// Compiler error when you try to
// instantiate a Der1, as the
// synthesized default ctor needs
// to invoke Base's default ctor.
class Der1 : public Base {
public:
int z;

};

class Der2 : public Base {
public:
Der2(int y, int z)

: Base(y), z(z) { }
int z;

};

badctor.cc
// has default ctor
class Base {
public:
int y;

};

// works now
class Der1 : public Base {
public:
int z;

};

// still works
class Der2 : public Base {
public:
Der2(int z) : z(z) { }
int z;

};

goodctor.cc

20

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Destructors and Inheritance

v Destructor of a derived
class:
§ First runs body of the dtor
§ Then invokes of the dtor

of the base class

v Static dispatch of
destructors is almost
always a mistake!
§ Good habit to always

define a dtor as virtual
• Empty body if there’s

no work to do

class Base {
public:
Base() { x = new int; }
~Base() { delete x; }
int* x;

};

class Der1 : public Base {
public:
Der1() { y = new int; }
~Der1() { delete y; }
int* y;

};

void foo() {
Base* b0ptr = new Base;
Base* b1ptr = new Der1;

delete b0ptr; // OK
delete b1ptr; // leaks Der1::y

}

baddtor.cc

21

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Assignment and Inheritance

v C++ allows you to assign
the value of a derived
class to an instance of
a base class
§ Known as object slicing

• It’s legal since b=d passes
type checking rules

• But b doesn’t have space
for any extra fields in d

class Base {
public:
Base(int x) : x_(x) { }
int x_;

};

class Der1 : public Base {
public:
Der1(int y) : Base(16), y_(y) { }
int y_;

};

void foo() {
Base b(1);
Der1 d(2);

d = b; // compiler error
b = d; // what happens to y_?

}

slicing.cc

22

CSE333, Spring 2020L19: C++ Inheritance II, Casting

STL and Inheritance

v Recall: STL containers store copies of values
§ What happens when we want to store mixes of object types in a

single container? (e.g. Stock and DividendStock)
§ You get sliced L

23

#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> li;

li.push_back(s); // OK
li.push_back(ds); // OUCH!

return 0;
}

CSE333, Spring 2020L19: C++ Inheritance II, Casting

STL and Inheritance

v Instead, store pointers to heap-allocated objects in STL
containers
§ No slicing! J
§ sort() does the wrong thing L
§ You have to remember to delete your objects before

destroying the container L
• Smart pointers!

24

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Lecture Outline

v C++ Inheritance
§ Static Dispatch
§ Abstract Classes
§ Constructors and Destructors
§ Assignment

v C++ Casting

v Reference: C++ Primer §4.11.3, 19.2.1
25

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Explicit Casting in C

v Simple syntax: lhs = (new_type) rhs;
v Used to:

§ Convert between pointers of arbitrary type
• Don’t change the data, but treat differently

§ Forcibly convert a primitive type to another
• Actually changes the representation

v You can still use C-style casting in C++, but sometimes the
intent is not clear

26

lhs = (new_type) rhs;

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Casting in C++

v C++ provides an alternative casting style that is more
informative:
§ static_cast<to_type>(expression)

§ dynamic_cast<to_type>(expression)

§ const_cast<to_type>(expression)

§ reinterpret_cast<to_type>(expression)

v Always use these in C++ code
§ Intent is clearer
§ Easier to find in code via searching

27

CSE333, Spring 2020L19: C++ Inheritance II, Casting

static_cast

v static_cast can convert:
§ Pointers to classes of related type

• Compiler error if classes are not related
• Dangerous to cast down a class hierarchy

§ Non-pointer conversion
• e.g. float to int

v static_cast is
checked at compile time

28

class A {
public:
int x;

};

class B {
public:
float x;

};

class C : public B {
public:
char x;

};

void foo() {
B b; C c;

// compiler error
A* aptr = static_cast<A*>(&b);
// OK
B* bptr = static_cast<B*>(&c);
// compiles, but dangerous
C* cptr = static_cast<C*>(&b);

}

staticcast.cc

CSE333, Spring 2020L19: C++ Inheritance II, Casting

dynamic_cast

v dynamic_cast can convert:
§ Pointers to classes of related type
§ References to classes of related type

v dynamic_cast is checked at both
compile time and
run time
§ Casts between

unrelated classes fail
at compile time

§ Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

29

void bar() {
Base b; Der1 d;

// OK (run-time check passes)
Base* bptr = dynamic_cast<Base*>(&d);
assert(bptr != nullptr);

// OK (run-time check passes)
Der1* dptr = dynamic_cast<Der1*>(bptr);
assert(dptr != nullptr);

// Run-time check fails, returns nullptr
bptr = &b;
dptr = dynamic_cast<Der1*>(bptr);
assert(dptr != nullptr);

}

dynamiccast.cc
class Base {
public:
virtual void foo() { }
float x;

};

class Der1 : public Base {
public:
char x;

};

CSE333, Spring 2020L19: C++ Inheritance II, Casting

const_cast

v const_cast adds or strips const-ness
§ Dangerous (!)

30

void foo(int* x) {
*x++;

}

void bar(const int* x) {
foo(x); // compiler error
foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {
int x = 7;
bar(&x);
return 0;

}

CSE333, Spring 2020L19: C++ Inheritance II, Casting

reinterpret_cast

v reinterpret_cast casts between incompatible types
§ Low-level reinterpretation of the bit pattern
§ e.g. storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough

§ Converting between incompatible pointers
• Dangerous (!)
• This is used (carefully) in hw3

31

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Implicit Conversion

v The compiler tries to infer some kinds of conversions
§ When types are not equal and you don’t specify an explicit cast,

the compiler looks for an acceptable implicit conversion

32

void bar(std::string x);

void foo() {
int x = 5.7; // conversion, float -> int
bar("hi"); // conversion, (const char*) -> string
char c = x; // conversion, int -> char

}

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Sneaky Implicit Conversions

v (const char*) to string conversion?
§ If a class has a constructor with a single parameter, the compiler

will exploit it to perform implicit conversions
§ At most, one user-defined implicit conversion will happen

• Can do int→ Foo, but not int→ Foo→ Baz

33

class Foo {
public:
Foo(int x) : x(x) { }
int x;

};

int Bar(Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // equivalent to return Bar(Foo(5));

}

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Avoiding Sneaky Implicits

v Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path
§ Usually a good idea

34

class Foo {
public:
explicit Foo(int x) : x(x) { }
int x;

};

int Bar(Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error

}

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Extra Exercise #1

v Design a class hierarchy to represent shapes
§ e.g. Circle, Triangle, Square

v Implement methods that:
§ Construct shapes
§ Move a shape (i.e. add (x,y) to the shape position)
§ Returns the centroid of the shape
§ Returns the area of the shape
§ Print(), which prints out the details of a shape

35

CSE333, Spring 2020L19: C++ Inheritance II, Casting

Extra Exercise #2

v Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):
§ Constructs a vector of shapes
§ Sorts the vector according to the area of the shape
§ Prints out each member of the vector

v Notes:
§ Avoid slicing!
§ Make sure the sorting works properly!

36

