
CSE333, Spring 2020L18: C++ Inheritance I

C++ Inheritance I
CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:
Ramya Challa Mengqui Chen John Depaszthory
Greg Guo Zachary Keyes CJ Lin
Travis McGaha Arjun Singh Guramrit Singh
Cosmo Wang Yifan Xu Robin Yang
Haoran Yu Velocity Yu

CSE333, Spring 2020L18: C++ Inheritance I

Administrivia

v Congratulations! We’re half-way through the quarter!

v New exercise out Monday – simple wordcount using STL
map – print words alphabetically with their frequencies

v hw3 due a week from Thursday night, 5/14
§ A bit more demo today before we start on subclasses

v Sections this week: how to debug disk files and other hw3
things + more!
§ Be there!!

2

CSE333, Spring 2020L18: C++ Inheritance I

Administrivia (added Wed.)

v No new exercise today. We’ll have one covering
inheritance and subclasses out Friday, due Monday, once
we’ve gotten far enough in lecture.

v How’s hw3 going? Any general questions?

v Sections tomorrow: how to debug disk files and other
hw3 things + more!
§ Be there!!

3

CSE333, Spring 2020L18: C++ Inheritance I

Lecture Outline

v C++ Inheritance
§ Review of basic idea
§ Dynamic Dispatch
§ vtables and vptr

v Reference: C++ Primer, Chapter 15

5

CSE333, Spring 2020L18: C++ Inheritance I

Overview of Next Two Lectures

v C++ inheritance
§ Review of basic idea (pretty much the same as in Java)
§ What’s different in C++ (compared to Java)

• Static vs dynamic dispatch - virtual functions and vtables are optional
• Pure virtual functions, abstract classes, why no Java “interfaces”
• Assignment slicing, using class hierarchies with STL

§ Casts in C++
§ Reference: C++ Primer, ch. 15

• (read it! a lot of how C++ does this looks like Java, but details differ)

6

CSE333, Spring 2020L18: C++ Inheritance I

Stock Portfolio Example

v A portfolio represents a person’s financial investments
§ Each asset has a cost (i.e. how much was paid for it) and a market

value (i.e. how much it is worth)
• The difference between the cost and market value is the profit (or

loss)

§ Different assets compute market value in different ways
• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of

shares, share price paid, and current share price
• A dividend stock is a stock that also has dividend payments
• Cash is an asset that never incurs a profit or loss

7(Credit: thanks to Marty Stepp for this example)

CSE333, Spring 2020L18: C++ Inheritance I

Design Without Inheritance

v One class per asset type:

§ Redundant!
§ Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

v See sample code in initial_design/
8

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Spring 2020L18: C++ Inheritance I

Inheritance

v A parent-child “is-a” relationship between classes
§ A child (derived class) extends a parent (base class)

v Benefits:
§ Code reuse

• Children can automatically inherit code from parents

§ Polymorphism
• Ability to redefine existing behavior but preserve the interface
• Children can override the behavior of the parent
• Others can make calls on objects without knowing which part of the

inheritance tree it is in

§ Extensibility
• Children can add behavior

9

CSE333, Spring 2020L18: C++ Inheritance I

Terminology

v Mean the same things. You’ll hear both.

10

Java C++

Superclass Base Class

Subclass Derived Class

CSE333, Spring 2020L18: C++ Inheritance I

Design With Inheritance

11

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Asset (abstract)

GetMarketValue()
GetProfit()
GetCost()

CSE333, Spring 2020L18: C++ Inheritance I

Like Java: Access Modifiers

v public: visible to all other classes
v protected: visible to current class and its derived

classes
v private: visible only to the current class

v Use protected for class members only when
§ Class is designed to be extended by subclasses
§ Subclasses must have access but clients should not be allowed

12

CSE333, Spring 2020L18: C++ Inheritance I

Class derivation List

v Comma-separated list of classes to inherit from:

§ Focus on single inheritance, but multiple inheritance possible

v Almost always you will want public inheritance
§ Acts like extends does in Java
§ Any member that is non-private in the base class is the same in

the derived class; both interface and implementation inheritance
• Except that constructors, destructors, copy constructor, and

assignment operator are never inherited
13

#include "BaseClass.h"

class Name : public BaseClass {
...

};

CSE333, Spring 2020L18: C++ Inheritance I

Back to Stocks

BASE DERIVED

14

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Spring 2020L18: C++ Inheritance I

Back to Stocks

v A derived class:
§ Inherits the behavior and state (specification) of the base class
§ Overrides some of the base class’ member functions (opt.)
§ Extends the base class with new member functions, variables

(opt.)

15

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

dividends_

GetMarketValue()
GetProfit()
GetCost()

PayDividend()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Spring 2020L18: C++ Inheritance I

Like Java: Dynamic Dispatch
v Usually, when a derived function is available for an object, we

want the derived function to be invoked
§ This requires a run time decision of what code to invoke
§ This is similar to Java

v A member function invoked on an object should be the most-
derived function accessible to the object’s visible type
§ Can determine what to invoke from the object itself

v Example: PrintStock(Stock *s) { s->Print() }
§ Calls Print() function appropriate to Stock, DividendStock, etc. without

knowing the exact class of *s, other than it is some sort of Stock
§ So the Stock (DividendStock, etc.) object itself has to carry some sort of

information that can be used to decide which Print() to call
§ (see inherit-design/useasssets.cc)

16

CSE333, Spring 2020L18: C++ Inheritance I

Requesting Dynamic Dispatch

v Prefix the member function declaration with the
virtual keyword
§ Derived/child functions don’t need to repeat virtual, but was

traditionally good style to do so
§ This is how method calls work in Java (no virtual keyword needed)
§ You almost always want functions to be virtual

v override keyword (C++11)
§ Tells compiler this method should be overriding an inherited

virtual function – always use if available
§ Prevents overloading vs. overriding bugs

v Both of these are technically optional in derived classes
§ A virtual function is virtual in all subclasses as well
§ Be consistent and follow local conventions

17

CSE333, Spring 2020L18: C++ Inheritance I

Dynamic Dispatch Example

v When a member function is invoked on an object:
§ The most-derived function accessible to the object’s visible type is

invoked (decided at run time based on actual type of the object)

18

double DividendStock::GetMarketValue() const {
return get_shares() * get_share_price() + dividends_;

}

double "DividendStock"::GetProfit() const { // inherited
return GetMarketValue() – GetCost();

} // really Stock::GetProfit()

double Stock::GetMarketValue() const {
return get_shares() * get_share_price();

}

double Stock::GetProfit() const {
return GetMarketValue() – GetCost();

}

DividendStock.cc

Stock.cc

CSE333, Spring 2020L18: C++ Inheritance I

Dynamic Dispatch Example

19

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes DividendStock::GetMarketValue(),
// since that is the most-derived accessible function.
s->GetProfit();

CSE333, Spring 2020L18: C++ Inheritance I

Most-Derived

20

class A {
public:
// Foo will use dynamic dispatch
virtual void Foo();

};

class B : public A {
public:
// B::Foo overrides A::Foo
virtual void Foo();

};

class C : public B {
// C inherits B::Foo()

};

void Bar() {
A* a_ptr;
C c;

a_ptr = &c;

// Whose Foo() is called?
a_ptr->Foo();

}

CSE333, Spring 2020L18: C++ Inheritance I

Your Turn!

v Which Foo() is called?

Q1 Q2
A A
B B
D D
? ?

22

class A {
public:
virtual void Foo();

};

class B : public A {
public:
virtual void Foo();

};

class C : public B {
};

class D : public C {
public:
virtual void Foo();

};

class E : public C {
};

void Bar() {
A* a_ptr;
C c;
E e;

// Q1:
a_ptr = &c;
a_ptr->Foo();

// Q2:
a_ptr = &e;
a_ptr->Foo();

}

CSE333, Spring 2020L18: C++ Inheritance I

How Can This Possibly Work?

v The compiler produces Stock.o from just Stock.cc
§ It doesn’t know that DividendStock exists during this process
§ So then how does the emitted code know to call
Stock::GetMarketValue() or
DividendStock::GetMarketValue()

or something else that might not exist yet?
• Function pointers

23

double Stock::GetMarketValue() const {
return get_shares() * get_share_price();

}

double Stock::GetProfit() const {
return GetMarketValue() – GetCost();

} Stock.cc

virtual double Stock::GetMarketValue() const;
virtual double Stock::GetProfit() const;

Stock.h

CSE333, Spring 2020L18: C++ Inheritance I

vtables and the vptr

v If a class contains any virtual methods, the compiler
emits:
§ A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class
• The pointers in the vtable point to the most-derived function for that

class

§ A virtual table pointer (vptr) for each object instance
• A pointer to a virtual table as a “hidden” member variable
• When the object’s constructor is invoked, the vptr is initialized to

point to the vtable for the newly constructed object’s class
• Thus, the vptr “remembers” what class the object is

24

CSE333, Spring 2020L18: C++ Inheritance I

vtable/vptr Example

26

class Base {
public:
virtual void f1();
virtual void f2();

};

class Der1 : public Base {
public:
virtual void f1();

};

class Der2 : public Base {
public:
virtual void f2();

};

Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &b;
Base* b1ptr = &d1;
Base* b2ptr = &d2;

b0ptr->f1(); // Base::f1()
b0ptr->f2(); // Base::f2()

b1ptr->f1(); // Der1::f1()
b1ptr->f2(); // Base::f2()

d2.f1(); // Base::f1()
b2ptr->f1(); // Base::f1()
b2ptr->f2(); // Der2::f2()

CSE333, Spring 2020L18: C++ Inheritance I

vtable/vptr Example

27

Base b;
Der1 d1;
Der2 d2;

Base* bptr = &d1;

bptr->f1();
// bptr -->
// d1.vptr -->
// Der1.vtable.f1 -->
// Base::f1()

bptr = &d2;

bptr->f1();
// bptr -->
// d2.vptr -->
// Der2.vtable.f1 -->
// Base::f1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base
f1()
f2()

Der1
f1()
f2()

Der2
f1()
f2()

Base::f1()
push %rbp
...

Base::f2()
push %rbp
...

Der1::f1()
push %rbp
...

Der2::f2()
push %rbp
...

CSE333, Spring 2020L18: C++ Inheritance I

Let’s Look at Some Actual Code

v Let’s examine the following code using objdump
§ g++ -g -o vtable vtable.cc

§ objdump -CDS vtable > vtable.d

28

class Base {
public:
virtual void f1();
virtual void f2();

};

class Der1 : public Base {
public:
virtual void f1();

};

int main(int argc, char** argv) {
Der1 d1;
d1.f1();
Base* bptr = &d1;
bptr->f1();

}

vtable.cc

CSE333, Spring 2020L18: C++ Inheritance I

More to Come…

Next time…

29

