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Administrivia

v Congratulations!  We’re half-way through the quarter!

v New exercise out Monday – simple wordcount using STL 
map – print words alphabetically with their frequencies

v hw3 due a week from Thursday night, 5/14
§ A bit more demo today before we start on subclasses

v Sections this week: how to debug disk files and other hw3 
things + more!
§ Be there!!
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Administrivia (added Wed.)

v No new exercise today.  We’ll have one covering 
inheritance and subclasses out Friday, due Monday, once 
we’ve gotten far enough in lecture.

v How’s hw3 going?  Any general questions?

v Sections tomorrow: how to debug disk files and other 
hw3 things + more!
§ Be there!!
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Lecture Outline

v C++ Inheritance
§ Review of basic idea
§ Dynamic Dispatch
§ vtables and vptr

v Reference:  C++ Primer, Chapter 15
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Overview of Next Two Lectures

v C++ inheritance
§ Review of basic idea (pretty much the same as in Java)
§ What’s different in C++ (compared to Java)

• Static vs dynamic dispatch - virtual functions and vtables are optional
• Pure virtual functions, abstract classes, why no Java “interfaces”
• Assignment slicing, using class hierarchies with STL

§ Casts in C++
§ Reference: C++ Primer, ch. 15

• (read it! a lot of how C++ does this looks like Java, but details differ)
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Stock Portfolio Example

v A portfolio represents a person’s financial investments
§ Each asset has a cost (i.e. how much was paid for it) and a market 

value (i.e. how much it is worth)
• The difference between the cost and market value is the profit (or 

loss)

§ Different assets compute market value in different ways
• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of 

shares, share price paid, and current share price
• A dividend stock is a stock that also has dividend payments
• Cash is an asset that never incurs a profit or loss

7(Credit:  thanks to Marty Stepp for this example)
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Design Without Inheritance

v One class per asset type:

§ Redundant!
§ Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

v See sample code in initial_design/
8

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()
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Inheritance

v A parent-child “is-a” relationship between classes
§ A child (derived class) extends a parent (base class)

v Benefits:
§ Code reuse

• Children can automatically inherit code from parents

§ Polymorphism
• Ability to redefine existing behavior but preserve the interface
• Children can override the behavior of the parent
• Others can make calls on objects without knowing which part of the 

inheritance tree it is in

§ Extensibility
• Children can add behavior
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Terminology

v Mean the same things.  You’ll hear both.
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Java C++

Superclass Base Class

Subclass Derived Class



CSE333, Spring 2020L18:  C++ Inheritance I

Design With Inheritance
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Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Asset (abstract)

GetMarketValue()
GetProfit()
GetCost()
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Like Java:  Access Modifiers

v public: visible to all other classes
v protected: visible to current class and its derived

classes
v private: visible only to the current class

v Use protected for class members only when
§ Class is designed to be extended by subclasses
§ Subclasses must have access but clients should not be allowed

12



CSE333, Spring 2020L18:  C++ Inheritance I

Class derivation List

v Comma-separated list of classes to inherit from:

§ Focus on single inheritance, but multiple inheritance possible

v Almost always you will want public inheritance
§ Acts like extends does in Java
§ Any member that is non-private in the base class is the same in 

the derived class; both interface and implementation inheritance
• Except that constructors, destructors, copy constructor, and 

assignment operator are never inherited
13

#include "BaseClass.h"

class Name : public BaseClass {
...

};
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Back to Stocks

BASE DERIVED
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Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()
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Back to Stocks

v A derived class:
§ Inherits the behavior and state (specification) of the base class
§ Overrides some of the base class’ member functions (opt.)
§ Extends the base class with new member functions, variables 

(opt.)
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Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

dividends_

GetMarketValue()
GetProfit()
GetCost()

PayDividend()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()
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Like Java: Dynamic Dispatch
v Usually, when a derived function is available for an object, we 

want the derived function to be invoked
§ This requires a run time decision of what code to invoke
§ This is similar to Java

v A member function invoked on an object should be the most-
derived function accessible to the object’s visible type
§ Can determine what to invoke from the object itself

v Example: PrintStock(Stock *s) { s->Print() }
§ Calls Print() function appropriate to Stock, DividendStock, etc. without 

knowing the exact class of *s, other than it is some sort of Stock
§ So the Stock (DividendStock, etc.) object itself has to carry some sort of 

information that can be used to decide which Print() to call
§ (see inherit-design/useasssets.cc)
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Requesting Dynamic Dispatch

v Prefix the member function declaration with the 
virtual keyword
§ Derived/child functions don’t need to repeat virtual, but was 

traditionally good style to do so
§ This is how method calls work in Java (no virtual keyword needed)
§ You almost always want functions to be virtual

v override keyword (C++11)
§ Tells compiler this method should be overriding an inherited 

virtual function – always use if available
§ Prevents overloading vs. overriding bugs

v Both of these are technically optional in derived classes
§ A virtual function is virtual in all subclasses as well
§ Be consistent and follow local conventions
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Dynamic Dispatch Example

v When a member function is invoked on an object:
§ The most-derived function accessible to the object’s visible type is 

invoked (decided at run time based on actual type of the object)
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double DividendStock::GetMarketValue() const {
return get_shares() * get_share_price() + dividends_;

}

double "DividendStock"::GetProfit() const {  // inherited
return GetMarketValue() – GetCost(); 

}       // really Stock::GetProfit()

double Stock::GetMarketValue() const {
return get_shares() * get_share_price();

}

double Stock::GetProfit() const {
return GetMarketValue() – GetCost();

}

DividendStock.cc

Stock.cc
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Dynamic Dispatch Example
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#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend();
DividendStock* ds = &dividend;
Stock* s = &dividend;   // why is this allowed?

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.  
// Stock::GetProfit() invokes DividendStock::GetMarketValue(), 
// since that is the most-derived accessible function.
s->GetProfit();
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Most-Derived
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class A {
public:
// Foo will use dynamic dispatch
virtual void Foo();

};

class B : public A {
public:
// B::Foo overrides A::Foo
virtual void Foo();

};

class C : public B {
// C inherits B::Foo()

};

void Bar() {
A* a_ptr;
C c;

a_ptr = &c;

// Whose Foo() is called?
a_ptr->Foo();

}
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Your Turn!

v Which Foo() is called?

Q1 Q2
A A
B B
D D
?          ?
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class A {
public:
virtual void Foo();

};

class B : public A {
public:
virtual void Foo();

};

class C : public B {
};

class D : public C {
public:
virtual void Foo();

};

class E : public C {
};

void Bar() {
A* a_ptr;
C c;
E e;

// Q1:
a_ptr = &c;
a_ptr->Foo();

// Q2: 
a_ptr = &e;
a_ptr->Foo();

}
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How Can This Possibly Work?

v The compiler produces Stock.o from just Stock.cc
§ It doesn’t know that DividendStock exists during this process
§ So then how does the emitted code know to call 
Stock::GetMarketValue() or 
DividendStock::GetMarketValue()

or something else that might not exist yet?
• Function pointers
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double Stock::GetMarketValue() const {
return get_shares() * get_share_price();

}

double Stock::GetProfit() const {
return GetMarketValue() – GetCost();

} Stock.cc

virtual double Stock::GetMarketValue() const;
virtual double Stock::GetProfit() const;

Stock.h
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vtables and the vptr

v If a class contains any virtual methods, the compiler 
emits:
§ A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class
• The pointers in the vtable point to the most-derived function for that 

class

§ A virtual table pointer (vptr) for each object instance
• A pointer to a virtual table as a “hidden” member variable
• When the object’s constructor is invoked, the vptr is initialized to 

point to the vtable for the newly constructed object’s class
• Thus, the vptr “remembers” what class the object is
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vtable/vptr Example
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class Base {
public:
virtual void f1();
virtual void f2();

};

class Der1 : public Base {
public:
virtual void f1();

};

class Der2 : public Base {
public:
virtual void f2();

};

Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &b;
Base* b1ptr = &d1;
Base* b2ptr = &d2;

b0ptr->f1();  // Base::f1()
b0ptr->f2();  // Base::f2()

b1ptr->f1();  // Der1::f1()
b1ptr->f2();  // Base::f2()

d2.f1();      // Base::f1()
b2ptr->f1();  // Base::f1()
b2ptr->f2();  // Der2::f2()
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vtable/vptr Example
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Base b;
Der1 d1;
Der2 d2;

Base* bptr = &d1;

bptr->f1();
// bptr -->
// d1.vptr -->
// Der1.vtable.f1 -->
// Base::f1()

bptr = &d2;

bptr->f1();
// bptr -->
// d2.vptr -->
// Der2.vtable.f1 -->
// Base::f1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base
f1()
f2()

Der1
f1()
f2()

Der2
f1()
f2()

Base::f1()
push %rbp
...

Base::f2()
push %rbp
...

Der1::f1()
push %rbp
...

Der2::f2()
push %rbp
...
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Let’s Look at Some Actual Code

v Let’s examine the following code using objdump
§ g++ -g -o vtable vtable.cc

§ objdump -CDS vtable > vtable.d
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class Base {
public:
virtual void f1();
virtual void f2();

};

class Der1 : public Base {
public:
virtual void f1();

};

int main(int argc, char** argv) {
Der1 d1;
d1.f1();
Base* bptr = &d1; 
bptr->f1();

}

vtable.cc
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More to Come…

Next time…
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