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Administrivia

+» New exercise Wednesday: ex13 on smart pointers

" Due Friday morning

» hw3 deadline is now May 21 (a week from Thursday)

= How’s progress? Any questions, observations?

» If you are using the zoom app, you should check versions
and update if you haven’t recently (but not until after
class!). Zoom app < 5.0 won’t be able to access UW
meetings after the end of May.
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Lecture Outline

«~ Smart Pointers
" Intro and toy ptr
" std::unique ptr
= Reference counting

" std::shared ptrandstd::weak ptr

CSE333, Spring 2020



YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

Last Time...

«+ We learned about STL

+» We noticed that STL was doing an enormous amount of
copying

+ A solution: store pointers in containers instead of objects

= But who’s responsible for deleting and when???
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C++ Smart Pointers

« A smart pointer is an object that stores a pointer to a
heap-allocated object

= A smart pointer looks and behaves like a regular C++ pointer
- By overloading *, ->, [ ], etc.

" These can help you manage memory

- The smart pointer will delete the pointed-to object at the right time
including invoking the object’s destructor

— When that is depends on what kind of smart pointer you use

- With correct use of smart pointers, you no longer have to remember
when to delete new'd memory!
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A Toy Smart Pointer

+» We can implement a simple one with:
= A constructor that accepts a pointer
= A destructor that frees the pointer

" Qverloaded * and —> operators that access the pointer
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ToyPtr Class Template

ToyPtr.cc
(#ifndef TOYPTR H N
#define TOYPTR H
template <typename T> class ToyPtr {
public:
ToyPtr (T *ptr) : ptr (ptr) { } // constructor
~ToyPtr () { // destructor
1f (ptr_ != nullptr) {
delete ptr ;
ptr = nullptr;
}
}
T &operator* () { return *ptr ; } // * operator
T *operator->() { return ptr ; } // -> operator
private:
T *ptr ; // the pointer itself
i
#endif // TOYPTR H
. _ — y,
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ToyPtr Example

usetoy.cc
N

(#include <iostream>
#include "ToyPtr.h"

// simply struct to use

typedef struct { int x = 1, y = 2; } Point;

std::ostream &operator<<(std::ostream &out, const Point &rhs) {
return out << " (" << rhs.x << "," << rhs.y << ")";

}

int main (int argc, char **argv) {
// Create a dumb pointer
Point *leak = new Point;

// Create a "smart" pointer (OK, it's still pretty dumb)
ToyPtr<Point> notleak (new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " “Fnotleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return 0;
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What Makes This a Toy?

+» Can’t handle:
= Arrays
= Copying
" Reassignment
= Comparison

= .. plus many other subtleties...

+ Luckily, others have built non-toy smart pointers for us!
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std: :unique ptr

+ Aunigue ptr takes ownership of a pointer

= Atemplate: template parameter is the type that the “owned”
pointer references (i.e., the T in pointer type T *)

= Part of C++’s standard library (C++11)
" |ts destructor invokes delete on the owned pointer

- Invoked when unique ptr objectis delete’d or falls out of scope

11
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Using unique ptr

uniquel.cc
(#include <iostream> // for std::cout, std::endl 0

finclude <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS
void Leaky () {

int *x = new int(5); // heap-allocated

(*x) ++;

std::cout << *x << std::endl;
}  // never used delete, therefore leak
void NotLeaky () {

std::unique ptr<int> x(new int(5)); // wrapped, heap-allocated

(*x) ++;
std: :cout << *x << std::endl;
} // never used delete, but no leak

int main(int argc, char **argv) {
Leaky () ;
NotLeaky () ;
return EXIT SUCCESS;

\} J
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Why are unique ptrs useful?

+ If you have many potential exits out of a function, it’s easy
to forget to call delete on all of them
" unique ptr willdelete its pointer when it falls out of scope

" Thus,aunigque ptr also helps with exception safety

(void NotLeaky () {
std: :unique ptr<int> x(new int (5));

// lots of code, including several returns
// lots of code, including potential exception throws

13
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unique ptr Operations

unique2.cc
N

(#include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

using namespace std;
typedef struct { int a, b; } IntPair;

int main(int argc, char **argv) {
unique ptr<int> x(new int(5));

int *ptr = x.get(); // Return a pointer to pointed-to object
int val = *x; // Return the value of pointed-to object

// Access a field or function of a pointed-to object
unique ptr<IntPair> ip(new IntPair);
ip->a = 100;

// Deallocate current pointed-to object and store new polnter
x.reset (new int(l));

ptr = x.release(); // Release responsibility for freeing
delete ptr;
return EXIT SUCCESS;

14



Transferring Ownership

+ Use reset () and release () to transfer ownership

" release returns the pointer, sets wrapped pointer to nullptr

" reset delete’s the current pointer and stores a new one

(int main (int argc, char **argv) {

N
| unique3.cc
unique ptr<int> x(new 1nt(5));

cout << "x: " << x.get() << endl;

unique ptr<int> y(x.release()); // x abdicates ownership to y
cout << "x: " << x.get() << endl;

cout << "y: " << y.get() << endl;
unique ptr<int> z(new int (10));

// vy transfers ownership of its pointer to z.
// z's old pointer was delete'd in the process.
z.reset(y.release());

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020
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unique ptrs Cannot Be Copied

+ std::unique ptr hasdisabled its copy constructor
and assignment operator

" You cannot copy a unique ptr, helping maintain “uniqueness”

or “ownership” _ _
uniquefail.cc

r#include <memory> // for std::unique ptr b
#include <cstdlib> // for EXIT SUCCESS
int main (int argc, char **argv) {
std::unique ptr<int> x(new int(5)); // OK
std::unique ptr<int> y(x); // fail - no copy ctor
std::unique ptr<int> z; // OK — z 1s nullptr
zZ = X; // fail - no assignment op
return EXIT SUCCESS;
n} J

16
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unique ptr and STL

+ unique ptrscan be stored in STL containers

= Wait, what? STL containers like to make lots of copies of stored
objects and unique ptrs cannot be copied...

+» Move semantics to the rescue!

"= When supported, STL containers will move rather than copy

- unique ptrssupport move semantics

17



Aside: Copy Semantics

+ Assigning values typically means making a copy

= Sometimes this is what you want
- e.g. assigning a string to another makes a copy of its value

= Sometimes this is wasteful

- e.g. assigning a returned string goes through a temporary copy
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rstd::string ReturnFoo (void) { copygananﬂc&cc
std::string x("foo");
return x; // this return might copy

}

int main(int argc, char **argv) {
std::string a("hello");
std::string b(a); // copy a into b

b = ReturnFoo () ; // copy return value into b

return EXIT SUCCESS;
}

~
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Move Semantics (added in C++11)

movesemantics.cc

+ “Move semantics”

rstd::string ReturnFoo (void) { )

move Va|ues from std::string x("foo");
i // this return might copy
one object to return x;

another without }

int main(int argc, char **argv) {

. (o . V4
Copylng ( Steallng ) std::string a("hello");
= Useful for optimizing // moves a to b
. std::string b = std::move (a);
W Mporar I
away te porary copies std::cout << "a: " << a << std::endl;
m Acomplex topic that std::cout << "b: " << b << std::endl;
usest#ﬂngsca”ed // moves the returned value into b
“« ” b = std: :move (ReturnFoo () ) ;
rvalue referen
alue ETE ences std::cout << "b: " << b << std::endl;

- Mostly beyond the
scope of 333 this }
quarter

return EXIT SUCCESS;

19
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Transferring Ownership via Move

+ unique ptr supports move semantics

= Can “move” ownership from one unique ptr to another

- Behavior is equivalent to the “release-and-reset” combination

(int main (int argc, char **argv) {
unique ptr<int> x(new int(5));
cout << "x: " << x.get() << endl;

X
uniqueé.cc

unique ptr<int> y = std::move(x); // x abdicates ownership to y
cout << "x: " << x.get() << endl;

cout << "y: " << y.get() << endl;
unique ptr<int> z(new int(10));

// v transfers ownership of 1its pointer to z.
// z's old pointer was delete'd in the process.
z = std::move (y);

return EXIT SUCCESS;

20
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unique ptr and STL Example

uniguevec.cc
{ )

(int main (int argc, char **argv)
std: :vector<std::unique ptr<int> > vec;

vec.push back (std::unique ptr<int>(new int (9)));
vec.push back (std::unique ptr<int>(new int (5)));
vec.push back (std::unique ptr<int>(new int(7)));

// z gets a copy of int value pointed to by vec[1]
int z = *vec[l];
std::cout << "z 1s: " << z << std::endl;

// won’t compile! Cannot copy unique ptr
std::unique ptr<int> copied = vec[l]; // hmmm. . .

// Works! vec[l] now wraps a nullptr

std: :unique ptr<int> moved = std::move(vec[l]);
std::cout << "*moved: " << *moved << std::endl;
std: :cout << "vec[l].get(): " << vec[l].get() << std::endl;

return EXIT SUCCESS;

22
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unique ptr and “<”

+ Aunigque ptr implements some comparison
operators, including operator<

"= However, it doesn’t invoke operator< on the pointed-to
objects

- Instead, it just promises a stable, strict ordering (probably based on
the pointer address, not the pointed-to-value)

" Sotouse sort () onvectors, you want to provide it with a
comparison function

23
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unique ptr and STL Sorting

uniquevecsort.cc
S

(using namespace std;

bool sortfunction(const unique ptr<int> &x,
const unique ptr<int> &y) { return *x < *y; }
void printfunction (unique ptr<int> &x) { cout << *x << endl; }

int main(int argc, char **argv) {
vector<unique ptr<int> > vec;

vec.push_back?unique_ptr<int>(new int (9)));
vec.push back (unique ptr<int>(new 1int (5)));
vec.push back (unique ptr<int>(new int(7)));

// buggy: sorts based on the values of the ptrs
sort (vec.begin (), vec.end());

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

// better: sorts based on the pointed-to values
sort (vec.begin(), vec.end(), é&sortfunction);

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

return EXIT SUCCESS;
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unique ptr, “<”, and maps

+ Similarly, you can use unique ptrsaskeysinamap
= Reminder: a map internally stores keys in sorted order
- lIterating through the map iterates through the keys in order
= By default, “<” is used to enforce ordering

- You must specify a comparator when constructing the map to get a
meaningful sorted order using “<” of unique ptrs

+» Compare (the 37 template) parameter:

= “A binary predicate that takes two element keys as arguments
and returns a bool. This can be a function pointer or a function
object.”

« bool fptr(Tls& lhs, Tl& rhs); OR member function
bool operator() (const Tl& lhs, const T1& rhs);

25
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unique ptr and map Example

uniquemap.cc

~

[ struct MapComp {
bool operator () (const unique ptr<int> é&lhs,
const unique ptr<int> &rhs) const { return *lhs < *rhs; }

b g

int main(int argc, char **argv) {
map<unique ptr<int>, int, MapComp> a map; // Create the map

unique ptr<int> a(new int(5)); // unique ptr for key
unique ptr<int> b(new int(9));
unique ptr<int> c(new int(7));

a map[std::move(a)] = 25; // move semantics to get ownership
a map[std::move(b)] = 81; // of unique ptrs into the map.
a map[std::move(c)] = 49; // a, b, c hold NULL after this.

map<unique ptr<int>,int>::iterator it;

for (it = a map.begin(); it != a map.end(); it++) {
std::cout << "key: " << *(it->first);
std::cout << " wvalue: " << it->second << std::endl;

}
return EXIT SUCCESS;
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unique ptr and Arrays

+ unique ptr can store arrays as well

" Will call delete[] on destruction

CSE333, Spring 2020

unique5.cc

[ #include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

using namespace std;

int main(int argc, char **argv) {
unique ptr<int[]> x(new int[5]);

return EXIT SUCCESS;

~

27
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std: :shared ptr

+ shared ptrissimilartounigque ptr butwe allow
shared objects to have multiple owners
= The copy/assign operators are not disabled and increment or

decrement reference counts as needed

- After a copy/assign, the two shared ptr objects point to the same
pointed-to object and the (shared) reference count is 2

" Whenashared ptr isdestroyed, the reference count is
decremented

- When the reference count hits 0, we de 1 ete the pointed-to object!

28
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shared ptr Example

sharedexample.cc

~

r#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared ptr

int main(int argc, char **argv) {
std::shared ptr<int> x(new int(10)); // ref count: 1

// temporary inner scope (!)

{

std::shared ptr<int> y = x; // ref count: 2
std::cout << *y << std::endl;
} // exit scope, y deleted
std::cout << *x << std::endl; // ref count: 1

return EXIT SUCCESS;
} // ref count: 0

. J
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shared ptrsand STL Containers

+ Even simpler than unique ptrs

= Safe to store shared ptrsincontainers, since copy/assign

maintain a shared reference count
sharedvec.cc

~

rvector<std::shared_ptr<int> > vec;

vec.push back (std::shared ptr<int>(new int(9)));

vec.push back (std::shared ptr<int>(new int(5)));
vec.push back (std::shared ptr<int>(new int(7)));
int &z = *vec]|[l];

std::cout << "z 1s: " << z << std::endl;

std::shared ptr<int> copied = vec[l]; // works!

std::cout << "*copied: " << *copied << std::endl;
std::shared ptr<int> moved = std::move(vec[l]); // works!
std::cout << "*moved: " << *moved << std::endl;

std::cout << "vec[l].get(): " << vec[l].get() << std::endl;

30
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Cycle of shared ptrs

strongcycle.cc

~

[ #include <cstdlib>
#include <memory>

head

using std::shared ptr;

struct A { 2 1
shared ptr<A> next; o —
shared ptr<A> prev;

bg

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head; e e e e

3
O
>
ct
3
O
>
ct

return EXIT SUCCESS;

+» What happens when we delete head?
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Cycle of shared ptrs

strongcycle.cc

[ #include <cstdlib>
#include <memory>

using std::shared ptr;

struct A {
shared ptr<A> next;
shared ptr<A> prev;

bg

int main (int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;

return EXIT SUCCESS;

~

+» What happens when we delete head? Nodes

head

CSE333, Spring 2020

unreachable but not deleted because ref counts >0

32
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std::weak_ptr

J/

+ weak ptrissimilartoa shared ptr butdoesn’t
affect the reference count
= Canonly “point to” an object that is managed by a shared ptr

= Not really a pointer — can’t actually dereference unless you “get”
its associated shared ptr

" Because it doesn’t influence the reference count, weak ptrs
can become “dangling”

- Object referenced may have been delete’d

- But you can check to see if the object still exists

+ Can be used to break our cycle problem!

33
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Breaking the Cycle with weak ptr

weakcycle.cc

~

[ #include <cstdlib>
#include <memory>

head

using std::shared ptr;
using std::weak ptr;

struct A { F————— =
shared ptr<A> next;
weak ptr<A> prev;

b g

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A()); e e - -
head->next->prev = head;

3
]
]
o+
3
]
]
o+
IS

return EXIT SUCCESS;

L} J

+» Now what happens when we delete head?
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Breaking the Cycle with weak ptr

weakcycle.cc

[ #include <cstdlib>
#include <memory>

using std::shared ptr;
using std::weak ptr;

struct A {
shared ptr<A> next;
weak ptr<A> prev;

b g

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;

return EXIT SUCCESS;

)

~

J

head

+» Now what happens when we delete head? Ref counts

go to 0 and nodes deleted!
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Using aweak ptr

usingweak.cc

~

r#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared ptr, std::weak ptr

int main(int argc, char **argv) {
std::weak ptr<int> w;

{ // temporary inner scope
std: :shared ptr<int> x;
{ // temporary inner—-inner scope
std: :shared ptr<int> y(new int (10));
w = y; // weak ref; ref count for “10” node is same
x = w.lock(); // get "promoted" shared ptr, ref cnt = 2
std::cout << *x << std::endl;

}
std: :cout << *x << std::endl;

} // x deleted; ref count now 0,; mem freed
std::shared ptr<int> a = w.lock(); // nullptr
std::cout << a << std::endl; // output is 0 (null)

return EXIT SUCCESS;




YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

Reference Counting Perspective

+ Reference counting is a technique for managing resources
by counting and storing number of references to an object
(i.e., # of pointers that hold the address of the object)

" |ncrement or decrement count as pointers are changed

= Delete the object when reference count decremented to O

«» Works great! But...
= Bunch of extra overhead on every pointer operation
= Cannot reclaim linked objects with circular references

= Not general enough for automatic memory management (need
automatic garbage collection as in Java), but when it’s appropriate
it’s a clean solution for resource management and cleanup

37
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Summary

+ Aunigue ptr takes ownership of a pointer

= Cannot be copied, but can be moved
= get () returns a copy of the pointer, but is dangerous to use;
better to use release () instead

" reset () deletesold pointer value and stores a new one

+ A shared ptr allows shared objects to have multiple
owners by doing reference counting
= deletesan object once its reference count reaches zero

+ Aweak ptr works with a shared object but doesn’t
affect the reference count

= Can’t actually be dereferenced, but can check if the object still

exists and can get a shared ptr fromthe weak ptrifitdoes
38



