YA/ UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

C++ Smart Pointers
CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:

Ramya Challa
Greg Guo
Travis McGaha
Cosmo Wang
Haoran Yu

Mengqui Chen
Zachary Keyes
Arjun Singh
Yifan Xu
Velocity Yu

John Depaszthory
CJ Lin

Guramrit Singh
Robin Yang

CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

Administrivia

+» New exercise Wednesday: ex13 on smart pointers

" Due Friday morning

» hw3 deadline is now May 21 (a week from Thursday)

= How’s progress? Any questions, observations?

» If you are using the zoom app, you should check versions
and update if you haven’t recently (but not until after
class!). Zoom app < 5.0 won’t be able to access UW
meetings after the end of May.

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Lecture Outline

«~ Smart Pointers
" Intro and toy ptr
" std::unique ptr
= Reference counting

" std::shared ptrandstd::weak ptr

CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

Last Time...

«+ We learned about STL

+» We noticed that STL was doing an enormous amount of
copying

+ A solution: store pointers in containers instead of objects

= But who’s responsible for deleting and when???

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

C++ Smart Pointers

« A smart pointer is an object that stores a pointer to a
heap-allocated object

= A smart pointer looks and behaves like a regular C++ pointer
- By overloading *, ->, [], etc.

" These can help you manage memory

- The smart pointer will delete the pointed-to object at the right time
including invoking the object’s destructor

— When that is depends on what kind of smart pointer you use

- With correct use of smart pointers, you no longer have to remember
when to delete new'd memory!

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

A Toy Smart Pointer

+» We can implement a simple one with:
= A constructor that accepts a pointer
= A destructor that frees the pointer

" Qverloaded * and —> operators that access the pointer

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

ToyPtr Class Template

ToyPtr.cc
(#ifndef TOYPTR H N
#define TOYPTR H
template <typename T> class ToyPtr {
public:
ToyPtr (T *ptr) : ptr (ptr) { } // constructor
~ToyPtr () { // destructor
1f (ptr_ != nullptr) {
delete ptr ;
ptr = nullptr;
}
}
T &operator* () { return *ptr ; } // * operator
T *operator->() { return ptr ; } // -> operator
private:
T *ptr ; // the pointer itself
i
#endif // TOYPTR H
. _ — y,

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

ToyPtr Example

usetoy.cc
N

(#include <iostream>
#include "ToyPtr.h"

// simply struct to use

typedef struct { int x = 1, y = 2; } Point;

std::ostream &operator<<(std::ostream &out, const Point &rhs) {
return out << " (" << rhs.x << "," << rhs.y << ")";

}

int main (int argc, char **argv) {
// Create a dumb pointer
Point *leak = new Point;

// Create a "smart" pointer (OK, it's still pretty dumb)
ToyPtr<Point> notleak (new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " “Fnotleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return 0;

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

What Makes This a Toy?

+» Can’t handle:
= Arrays
= Copying
" Reassignment
= Comparison

= .. plus many other subtleties...

+ Luckily, others have built non-toy smart pointers for us!

10

YA/ UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

std: :unique ptr

+ Aunigue ptr takes ownership of a pointer

= Atemplate: template parameter is the type that the “owned”
pointer references (i.e., the T in pointer type T *)

= Part of C++’s standard library (C++11)
" |ts destructor invokes delete on the owned pointer

- Invoked when unique ptr objectis delete’d or falls out of scope

11

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

Using unique ptr

uniquel.cc
(#include <iostream> // for std::cout, std::endl 0

finclude <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS
void Leaky () {

int *x = new int(5); // heap-allocated

(*x) ++;

std::cout << *x << std::endl;
} // never used delete, therefore leak
void NotLeaky () {

std::unique ptr<int> x(new int(5)); // wrapped, heap-allocated

(*x) ++;
std: :cout << *x << std::endl;
} // never used delete, but no leak

int main(int argc, char **argv) {
Leaky () ;
NotLeaky () ;
return EXIT SUCCESS;

\} J

12

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

Why are unique ptrs useful?

+ If you have many potential exits out of a function, it’s easy
to forget to call delete on all of them
" unique ptr willdelete its pointer when it falls out of scope

" Thus,aunigque ptr also helps with exception safety

(void NotLeaky () {
std: :unique ptr<int> x(new int (5));

// lots of code, including several returns
// lots of code, including potential exception throws

13

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

unique ptr Operations

unique2.cc
N

(#include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

using namespace std;
typedef struct { int a, b; } IntPair;

int main(int argc, char **argv) {
unique ptr<int> x(new int(5));

int *ptr = x.get(); // Return a pointer to pointed-to object
int val = *x; // Return the value of pointed-to object

// Access a field or function of a pointed-to object
unique ptr<IntPair> ip(new IntPair);
ip->a = 100;

// Deallocate current pointed-to object and store new polnter
x.reset (new int(l));

ptr = x.release(); // Release responsibility for freeing
delete ptr;
return EXIT SUCCESS;

14

Transferring Ownership

+ Use reset () and release () to transfer ownership

" release returns the pointer, sets wrapped pointer to nullptr

" reset delete’s the current pointer and stores a new one

(int main (int argc, char **argv) {

N
| unique3.cc
unique ptr<int> x(new 1nt(5));

cout << "x: " << x.get() << endl;

unique ptr<int> y(x.release()); // x abdicates ownership to y
cout << "x: " << x.get() << endl;

cout << "y: " << y.get() << endl;
unique ptr<int> z(new int (10));

// vy transfers ownership of its pointer to z.
// z's old pointer was delete'd in the process.
z.reset(y.release());

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

15

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

unique ptrs Cannot Be Copied

+ std::unique ptr hasdisabled its copy constructor
and assignment operator

" You cannot copy a unique ptr, helping maintain “uniqueness”

or “ownership” _ _
uniquefail.cc

r#include <memory> // for std::unique ptr b
#include <cstdlib> // for EXIT SUCCESS
int main (int argc, char **argv) {
std::unique ptr<int> x(new int(5)); // OK
std::unique ptr<int> y(x); // fail - no copy ctor
std::unique ptr<int> z; // OK — z 1s nullptr
zZ = X; // fail - no assignment op
return EXIT SUCCESS;
n} J

16

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

unique ptr and STL

+ unique ptrscan be stored in STL containers

= Wait, what? STL containers like to make lots of copies of stored
objects and unique ptrs cannot be copied...

+» Move semantics to the rescue!

"= When supported, STL containers will move rather than copy

- unique ptrssupport move semantics

17

Aside: Copy Semantics

+ Assigning values typically means making a copy

= Sometimes this is what you want
- e.g. assigning a string to another makes a copy of its value

= Sometimes this is wasteful

- e.g. assigning a returned string goes through a temporary copy

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

rstd::string ReturnFoo (void) { copygananﬂc&cc
std::string x("foo");
return x; // this return might copy

}

int main(int argc, char **argv) {
std::string a("hello");
std::string b(a); // copy a into b

b = ReturnFoo () ; // copy return value into b

return EXIT SUCCESS;
}

~

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

Move Semantics (added in C++11)

movesemantics.cc

+ “Move semantics”

rstd::string ReturnFoo (void) {)

move Va|ues from std::string x("foo");
i // this return might copy
one object to return x;

another without }

int main(int argc, char **argv) {

. (o . V4
Copylng (Steallng) std::string a("hello");
= Useful for optimizing // moves a to b
. std::string b = std::move (a);
W Mporar I
away te porary copies std::cout << "a: " << a << std::endl;
m Acomplex topic that std::cout << "b: " << b << std::endl;
usest#ﬂngsca”ed // moves the returned value into b
“« ” b = std: :move (ReturnFoo ()) ;
rvalue referen
alue ETE ences std::cout << "b: " << b << std::endl;

- Mostly beyond the
scope of 333 this }
quarter

return EXIT SUCCESS;

19

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

Transferring Ownership via Move

+ unique ptr supports move semantics

= Can “move” ownership from one unique ptr to another

- Behavior is equivalent to the “release-and-reset” combination

(int main (int argc, char **argv) {
unique ptr<int> x(new int(5));
cout << "x: " << x.get() << endl;

X
uniqueé.cc

unique ptr<int> y = std::move(x); // x abdicates ownership to y
cout << "x: " << x.get() << endl;

cout << "y: " << y.get() << endl;
unique ptr<int> z(new int(10));

// v transfers ownership of 1its pointer to z.
// z's old pointer was delete'd in the process.
z = std::move (y);

return EXIT SUCCESS;

20

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

unique ptr and STL Example

uniguevec.cc
{)

(int main (int argc, char **argv)
std: :vector<std::unique ptr<int> > vec;

vec.push back (std::unique ptr<int>(new int (9)));
vec.push back (std::unique ptr<int>(new int (5)));
vec.push back (std::unique ptr<int>(new int(7)));

// z gets a copy of int value pointed to by vec[1]
int z = *vec[l];
std::cout << "z 1s: " << z << std::endl;

// won’t compile! Cannot copy unique ptr
std::unique ptr<int> copied = vec[l]; // hmmm. . .

// Works! vec[l] now wraps a nullptr

std: :unique ptr<int> moved = std::move(vec[l]);
std::cout << "*moved: " << *moved << std::endl;
std: :cout << "vec[l].get(): " << vec[l].get() << std::endl;

return EXIT SUCCESS;

22

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

unique ptr and “<”

+ Aunigque ptr implements some comparison
operators, including operator<

"= However, it doesn’t invoke operator< on the pointed-to
objects

- Instead, it just promises a stable, strict ordering (probably based on
the pointer address, not the pointed-to-value)

" Sotouse sort () onvectors, you want to provide it with a
comparison function

23

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

unique ptr and STL Sorting

uniquevecsort.cc
S

(using namespace std;

bool sortfunction(const unique ptr<int> &x,
const unique ptr<int> &y) { return *x < *y; }
void printfunction (unique ptr<int> &x) { cout << *x << endl; }

int main(int argc, char **argv) {
vector<unique ptr<int> > vec;

vec.push_back?unique_ptr<int>(new int (9)));
vec.push back (unique ptr<int>(new 1int (5)));
vec.push back (unique ptr<int>(new int(7)));

// buggy: sorts based on the values of the ptrs
sort (vec.begin (), vec.end());

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

// better: sorts based on the pointed-to values
sort (vec.begin(), vec.end(), é&sortfunction);

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

unique ptr, “<”, and maps

+ Similarly, you can use unique ptrsaskeysinamap
= Reminder: a map internally stores keys in sorted order
- lIterating through the map iterates through the keys in order
= By default, “<” is used to enforce ordering

- You must specify a comparator when constructing the map to get a
meaningful sorted order using “<” of unique ptrs

+» Compare (the 37 template) parameter:

= “A binary predicate that takes two element keys as arguments
and returns a bool. This can be a function pointer or a function
object.”

« bool fptr(Tls& lhs, Tl& rhs); OR member function
bool operator() (const Tl& lhs, const T1& rhs);

25

CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

unique ptr and map Example

uniquemap.cc

~

[struct MapComp {
bool operator () (const unique ptr<int> é&lhs,
const unique ptr<int> &rhs) const { return *lhs < *rhs; }

b g

int main(int argc, char **argv) {
map<unique ptr<int>, int, MapComp> a map; // Create the map

unique ptr<int> a(new int(5)); // unique ptr for key
unique ptr<int> b(new int(9));
unique ptr<int> c(new int(7));

a map[std::move(a)] = 25; // move semantics to get ownership
a map[std::move(b)] = 81; // of unique ptrs into the map.
a map[std::move(c)] = 49; // a, b, c hold NULL after this.

map<unique ptr<int>,int>::iterator it;

for (it = a map.begin(); it != a map.end(); it++) {
std::cout << "key: " << *(it->first);
std::cout << " wvalue: " << it->second << std::endl;

}
return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

unique ptr and Arrays

+ unique ptr can store arrays as well

" Will call delete[] on destruction

CSE333, Spring 2020

unique5.cc

[#include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

using namespace std;

int main(int argc, char **argv) {
unique ptr<int[]> x(new int[5]);

return EXIT SUCCESS;

~

27

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

std: :shared ptr

+ shared ptrissimilartounigque ptr butwe allow
shared objects to have multiple owners
= The copy/assign operators are not disabled and increment or

decrement reference counts as needed

- After a copy/assign, the two shared ptr objects point to the same
pointed-to object and the (shared) reference count is 2

" Whenashared ptr isdestroyed, the reference count is
decremented

- When the reference count hits 0, we de 1 ete the pointed-to object!

28

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

shared ptr Example

sharedexample.cc

~

r#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared ptr

int main(int argc, char **argv) {
std::shared ptr<int> x(new int(10)); // ref count: 1

// temporary inner scope (!)

{

std::shared ptr<int> y = x; // ref count: 2
std::cout << *y << std::endl;
} // exit scope, y deleted
std::cout << *x << std::endl; // ref count: 1

return EXIT SUCCESS;
} // ref count: 0

. J

29

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

shared ptrsand STL Containers

+ Even simpler than unique ptrs

= Safe to store shared ptrsincontainers, since copy/assign

maintain a shared reference count
sharedvec.cc

~

rvector<std::shared_ptr<int> > vec;

vec.push back (std::shared ptr<int>(new int(9)));

vec.push back (std::shared ptr<int>(new int(5)));
vec.push back (std::shared ptr<int>(new int(7)));
int &z = *vec]|[l];

std::cout << "z 1s: " << z << std::endl;

std::shared ptr<int> copied = vec[l]; // works!

std::cout << "*copied: " << *copied << std::endl;
std::shared ptr<int> moved = std::move(vec[l]); // works!
std::cout << "*moved: " << *moved << std::endl;

std::cout << "vec[l].get(): " << vec[l].get() << std::endl;

30

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

Cycle of shared ptrs

strongcycle.cc

~

[#include <cstdlib>
#include <memory>

head

using std::shared ptr;

struct A { 2 1
shared ptr<A> next; o —
shared ptr<A> prev;

bg

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head; e e e e

3
O
>
ct
3
O
>
ct

return EXIT SUCCESS;

+» What happens when we delete head?

31

YA/ UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

Cycle of shared ptrs

strongcycle.cc

[#include <cstdlib>
#include <memory>

using std::shared ptr;

struct A {
shared ptr<A> next;
shared ptr<A> prev;

bg

int main (int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;

return EXIT SUCCESS;

~

+» What happens when we delete head? Nodes

head

CSE333, Spring 2020

unreachable but not deleted because ref counts >0

32

YA/ UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Spring 2020

std::weak_ptr

J/

+ weak ptrissimilartoa shared ptr butdoesn’t
affect the reference count
= Canonly “point to” an object that is managed by a shared ptr

= Not really a pointer — can’t actually dereference unless you “get”
its associated shared ptr

" Because it doesn’t influence the reference count, weak ptrs
can become “dangling”

- Object referenced may have been delete’d

- But you can check to see if the object still exists

+ Can be used to break our cycle problem!

33

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

Breaking the Cycle with weak ptr

weakcycle.cc

~

[#include <cstdlib>
#include <memory>

head

using std::shared ptr;
using std::weak ptr;

struct A { F————— =
shared ptr<A> next;
weak ptr<A> prev;

b g

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A()); e e - -
head->next->prev = head;

3
]
]
o+
3
]
]
o+
IS

return EXIT SUCCESS;

L} J

+» Now what happens when we delete head?

34

L16: C++ Smart Pointers

CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON

Breaking the Cycle with weak ptr

weakcycle.cc

[#include <cstdlib>
#include <memory>

using std::shared ptr;
using std::weak ptr;

struct A {
shared ptr<A> next;
weak ptr<A> prev;

b g

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;

return EXIT SUCCESS;

)

~

J

head

+» Now what happens when we delete head? Ref counts

go to 0 and nodes deleted!

35

CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Using aweak ptr

usingweak.cc

~

r#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared ptr, std::weak ptr

int main(int argc, char **argv) {
std::weak ptr<int> w;

{ // temporary inner scope
std: :shared ptr<int> x;
{ // temporary inner—-inner scope
std: :shared ptr<int> y(new int (10));
w = y; // weak ref; ref count for “10” node is same
x = w.lock(); // get "promoted" shared ptr, ref cnt = 2
std::cout << *x << std::endl;

}
std: :cout << *x << std::endl;

} // x deleted; ref count now 0,; mem freed
std::shared ptr<int> a = w.lock(); // nullptr
std::cout << a << std::endl; // output is 0 (null)

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Spring 2020

Reference Counting Perspective

+ Reference counting is a technique for managing resources
by counting and storing number of references to an object
(i.e., # of pointers that hold the address of the object)

" |ncrement or decrement count as pointers are changed

= Delete the object when reference count decremented to O

«» Works great! But...
= Bunch of extra overhead on every pointer operation
= Cannot reclaim linked objects with circular references

= Not general enough for automatic memory management (need
automatic garbage collection as in Java), but when it’s appropriate
it’s a clean solution for resource management and cleanup

37

CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Summary

+ Aunigue ptr takes ownership of a pointer

= Cannot be copied, but can be moved
= get () returns a copy of the pointer, but is dangerous to use;
better to use release () instead

" reset () deletesold pointer value and stores a new one

+ A shared ptr allows shared objects to have multiple
owners by doing reference counting
= deletesan object once its reference count reaches zero

+ Aweak ptr works with a shared object but doesn’t
affect the reference count

= Can’t actually be dereferenced, but can check if the object still

exists and can get a shared ptr fromthe weak ptrifitdoes
38

