YA/ UNIVERSITY of WASHINGTON

L15: C++ STL

C++ Standard Template Library

CSE 333 Spring 2020

Instructor: Hal Perkins

Teaching Assistants:

Ramya Challa
Greg Guo
Travis McGaha
Cosmo Wang
Haoran Yu

Mengqui Chen
Zachary Keyes
Arjun Singh
Yifan Xu
Velocity Yu

John Depaszthory
CJ Lin

Guramrit Singh
Robin Yang

CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

Administrivia

L)

+ New exercise ex12 out today. Due Monday morning.

= (uses STL vector and sort)

<« HW3 out now

= Starter code will be pushed to repos this afternoon

L)

= We'll take a look at it at the end of class today

CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON L15: C++STL

C++’s Standard Library

« C++’s Standard Library consists of four major pieces:
1) The entire C standard library
2) C++'s input/output stream library
- std::cin, std::cout, stringstreams, fstreams, etc.
3) C++'s standard template library (STL) =
- Containers, iterators, algorithms (sort, find, etc.), numerics

4) C++'s miscellaneous library

- Strings, exceptions, memory allocation, localization

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

STL Containers ©

« A container is an object that stores (in memory) a
collection of other objects (elements)

" Implemented as class templates, so hugely flexible
= More info in C++ Primer §9.2, 11.2

+ Several different classes of container

= Sequence containers (vector, deque, 1ist, ...)

= Associative containers (set, map, multiset, multimap,
bitset, ...)

= Differ in algorithmic cost and supported operations

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

STL Containers ®

+ STL containers store by value, not by reference

®= When you insert an object, the container makes a copy

= |f the container needs to rearrange objects, it makes copies
- e.g. ifyousortavector, it will make many, many copies
- e.g. if you insert into a map, that may trigger several copies

= What if you don’t want this (disabled copy constructor or copying
is expensive)?
- You can insert a wrapper object with a pointer to the object

— WEe'll learn about these “smart pointers” soon

YA/ UNIVERSITY of WASHINGTON L15: C++ STL

Our Tracer Class

+ Wrapper class foran int value

Default ctor, cctor, dtor, op=, op< defined
friend function operator<< defined
Also holds unique int id (increasing from 0)

Private helper method PrintID () to return
"(1d ,value)" asastring

Class and member definitions can be found in Tracer.h and
Tracer.cc

+ Useful for tracing behaviors of containers

All methods print identifying messages

Unique id allows you to follow individual instances

CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

STL vector

+ A generic, dynamically resizable array

®m http://www.cplusplus.com/reference/stl/vector/vector/

" Elements are store in contiguous memory locations

- Elements can be accessed using pointer arithmetic if you’d like
- Random access is O(1) time

= Adding/removing from the end is cheap (amortized constant
time)

" |nserting/deleting from the middle or start is expensive (linear
time)

http://www.cplusplus.com/reference/stl/vector/vector/

YA/ UNIVERSITY of WASHINGTON

L15: C++ STL

vector/Tracer Example

CSE333, Spring 2020

vectorfun.cc

(#include <iostream>
#include <vector>
#include "Tracer.h"

using namespace std;

int main(int argc, char**

Tracer a, b, c;
vector<Tracer> vec;

cout << "vec.push back "
vec.push back(a) ;
cout << "vec.push back "
vec.push back (b) ;
cout << "vec.push back "
vec.push back(c) ;

cout << "vec[0]" << endl
cout << "vec[2]" << endl

return 0;

argv) |

<< a << endl;
<< b << endl;

<< ¢ << endl;

<< vec[0] << endl;
<< vec[?2] << endl;

~N

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

Why All the Copying?

+» What’s going on here?

« Answer: a C++ vector (like Java’s ArrayList) is initially
small, but grows if needed as elements are added

" Implemented by allocating a new, larger underlying array, copy
existing elements to new array, and then replace previous array
with new one

+ And vector starts out really small by default, so it needs to
grow almost immediately!

= But you can specify an initial capacity if “really small” is an
inefficient initial size (use “reserve” member function)

= Example: see vectorcap.cc

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

STL iterator

« Each container class has an associated iterator class (e.g.
vector<int>::iterator) used to iterate through
elements of the container

= http://www.cplusplus.com/reference/std/iterator/

" |terator rangeis from beginuptoend i.e., [begin, end)
- end is one past the last container element!
= Some container iterators support more operations than others
 All can be incremented (++), copied, copy-constructed
- Some can be dereferenced on RHS (e.g. x = *it;)
- Some can be dereferenced on LHS (e.g. *it = x;)
- Some can be decremented (—-)

- Some support random access ([], +, -, +=, —=, <, > operators)

10

http://www.cplusplus.com/reference/std/iterator/

YA/ UNIVERSITY of WASHINGTON L15: C++STL

iterator Example

CSE333, Spring 2020

vectoriterator.cc

Yy
#include <vector>
#include "Tracer.h"
using namespace std;

int main(int argc, char** argv) {
Tracer a, b, c;
vector<Tracer> vec;

vec.push back (a) ;
vec.push back (b) ;
vec.push back (c) ;

cout << "Iterating:" << endl;
vector<Tracer>::iterator it;

cout << *it << endl;
}
cout << "Done iterating!" << endl;
return 0;

for (it = vec.begin(); it < vec.end();

it++)

{

N

11

L15: C++ STL CSE333, Spring 2020

YA/ UNIVERSITY of WASHINGTON

Type Inference (C++11)

+» The auto keyword can be used to infer types

= Simplifies your life if, for example, functions return complicated

types
= The expression using auto must contain explicit initialization for

it to work r// Calculate and return a VectorN
// containing all factors of n
std: :vector<int> Factors(int n);

void foo (void) {
// Manually identified type
std: :vector<int> factsl =

Factors (324234) ;

// Inferred type
auto facts?2 = Factors (12321);

// Compiler error here
auto facts3;

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

auto and lterators

+ Life becomes much simpler!

for (vector<Tracer>::iterator it = vec.begin(); it < vec.end(); it++) {
cout << *it << endl;

for (auto it = vec.begin(); it < vec.end(); it++) {
cout << *it << endl;

}

}

13

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

Range for Statement (C++11)

+ Syntactic sugar similar to Java’s foreach

~

[for (declaration : expression) f{
statements

}

. J

" declaration defines loop variable
" expressionisan object representing a sequence

- Strings, initializer lists, arrays with an explicit length defined, STL
containers that support iterators

(// Prints out a string, one
// character per line
std::string str("hello");

for (auto c : str) {
std::cout << ¢ << std::endl;

}
- J 14

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

Updated iterator Example

vectoriterator_2011.cc
N

Yy
#include <vector>
#include "Tracer.h"
using namespace std;

int main(int argc, char** argv) {
Tracer a, b, c;
vector<Tracer> vec;

vec.push back (a) ;
vec.push back (b) ;
vec.push back (c) ;

cout << "Iterating:" << endl;

for (auto & p : vec) { // p 1s a reference (alias) of vec
cout << p << endl; // element here; not a new copy

}

cout << "Done iterating!" << endl;

return 0O;

15

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

STL Algorithms

+ A set of functions to be used on ranges of elements

" Range: any sequence that can be accessed through iterators or
pointers, like arrays or some of the containers

" General form: |algorithm(begin, end, ...);

+ Algorithms operate directly on range elements rather
than the containers they live in
= Make use of elements’ copy ctor, =, ==, I, <

= Some do not modify elements

- e.g. find, count, for_each, min_element, binary_search
= Some do modify elements

- e.g. sort, transform, copy, swap

16

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

Algorithms Example

vectoralgos.cc
N

(#include <vector>
#include <algorithm>
#include "Tracer.h"
using namespace std;

void PrintOut (const Traceré& p) {
cout << " printout: " << p << endl;

}

int main(int argc, char** argv) {
Tracer a, b, c;
vector<Tracer> vec;

vec.push back(c) ;

vec.push back(a) ;

vec.push back (b) ;

cout << "sort:" << endl;

sort (vec.begin (), vec.end()):;

cout << "done sort!" << endl;

for each(vec.begin(), vec.end(), &PrintOut);
return 0O;

17

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

STL1list

+ A generic doubly-linked list

= http://www.cplusplus.com/reference/stl/list/

" Elements are not stored in contiguous memory locations
- Does not support random access (e.g. cannotdo 1ist[5])
= Some operations are much more efficient than vectors
- Constant time insertion, deletion anywhere in list

- Can iterate forward or backwards

Has a built-in sort member function

- Doesn’t copy! Manipulates list structure instead of element values

20

http://www.cplusplus.com/reference/stl/list/

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

list Example

listexample.cc
N

(#include <list>
#include <algorithm>
#include "Tracer.h"
using namespace std;

void PrintOut (const Traceré& p) {
cout << " printout: " << p << endl;

}

int main(int argc, char** argv) {
Tracer a, b, c;
list<Tracer> 1lst;

lst.push back (c);

lst.push back (a);

lst.push back (b);

cout << "sort:" << endl;

lst.sort () ;

cout << "done sort!" << endl;

for each(lst.begin(), lst.end(), &PrintOut);
return 0O;

21

L15: C++ STL

YA/ UNIVERSITY of WASHINGTON

STL map

CSE333, Spring 2020

% One of C++’s associative containers: a key/value table,
implemented as a search tree

http://www.cplusplus.com/reference/stl/map/

General form:

map<key type,

value type> name;

Keys must be unigque

- multimap allows duplicate keys

Efficient lookup (O(log n)) and insertion (O(log n))

« Access value via name [key]

Elements are type pair<key type, value type>andare
stored in sorted order (key is field £irst, value is field second)

- Key type must support less-than operator (<)

22

http://www.cplusplus.com/reference/stl/map/

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

map Example

mapexample.cc
{)

rvoid PrintOut (const pair<Tracer,Tracer>& p)
cout << "printout: [" << p.first << "," << p.second << "]" << endl;

}

int main(int argc, char** argv) {
Tracer a, b, ¢, 4, e, £;
map<Tracer, Tracer> table;
map<Tracer, Tracer>::1terator 1it;

table.insert (pair<Tracer, Tracer>(a, b))

table[c] = d;
table[e] = f;
cout << "table[e]:" << table[e] << endl;

it = table.find(c) ;

cout << "PrintOut (*1it), where it = table.find(c)" << endl;
PrintOut (*it) ;

cout << "iterating:" << endl;
for each(table.begin(), table.end(), &PrintOut);

return 0O;

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

Unordered Containers (C++11)

+ unordered map, unordered set

" And related classes unordered multimap,
unordered multiset

= Average case for key access is O(1)
- But range iterators can be less efficient than ordered map/set

= See C++ Primer, online references for details

24

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

Extra Exercise #1

% Using the Tracer.h/. cc files from lecture:

= Construct a vector of lists of Tracers

- j.e. a vector container with each element beinga 1ist of
Tracers

= Observe how many copies happen ©
- Use the sort algorithm to sort the vector

« Usethe 1list.sort () function to sort each list

25

YA/ UNIVERSITY of WASHINGTON L15: C++ STL CSE333, Spring 2020

Extra Exercise #2

+ Take one of the books from HW2’s test tree and:
= Read in the book, split it into words (you can use your hw?2)

" For each word, insert the word into an STL map

- The key is the word, the value is an integer

- The value should keep track of how many times you’ve seen the word,
so each time you encounter the word, increment its map element

« Thus, build a histogram of word count
" Print out the histogram in order, sorted by word count

= Bonus: Plot the histogram on a log-log scale (use Excel, gnuplot,
etc.)

- x-axis: log(word number), y-axis: log(word count)

26

